stable Diffusion必备模型备忘录

Hires. fix

  • 8x_NMKD-Superscale
https://huggingface.co/uwg/upscaler/resolve/main/ESRGAN/8x_NMKD-Superscale_150000_G.pth
放置位置: \models\ESRGAN

ControlNet

包括线稿、骨骼、深度等等。

https://huggingface.co/comfyanonymous/ControlNet-v1-1_fp16_safetensors/tree/main
https://huggingface.co/lllyasviel/ControlNet-v1-1/resolve/main/control_v11p_sd15_inpaint.pth

SDXL

https://aistudio.baidu.com/datasetdetail/246651

segment_anything

https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth
https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth
https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth

WD14反推提示词 lllyasviel/misc

  • https://huggingface.co/lllyasviel/misc/tree/main
  • \models\wd14
clip_vision_vit_h.safetensors
control-lora-canny-rank128.safetensors
fooocus_expansion.bin
fooocus_ip_negative.safetensors
fooocus_upscaler_s409985e5.bin
fooocus_xl_cpds.safetensors
fooocus_xl_cpds_128.safetensors
ip-adapter-plus-face_sdxl_vit-h.bin
ip-adapter-plus_sdxl_vit-h.bin
model_base_caption_capfilt_large.pth
sai_xl_canny_256lora.safetensors
sdxl_lcm_lora.safetensors
taesdxl_decoder.pth
vaeapp_sd15.pt
wd-v1-4-moat-tagger-v2.csv
wd-v1-4-moat-tagger-v2.onnx
xl-to-v1_interposer-v3.1.safetensors
xlvaeapp.pth

Inpaint

  • https://huggingface.co/lllyasviel/fooocus_inpaint/tree/main
  • models\inpaint\foocus_inpaint
fooocus_inpaint_head.pth
fooocus_lama.safetensors
inpaint.fooocus.patch
inpaint_v25.fooocus.patch
inpaint_v26.fooocus.patch

IP-Adapter

  • models\ipadapter
  • https://hf-mirror.com/InvokeAI/ip_adapter_sdxl_vit_h/tree/main
ip-adapter_sdxl_vit-h.safetensors
  • https://hf-mirror.com/InvokeAI/ip-adapter-plus_sdxl_vit-h/tree/main
ip-adapter-plus_sdxl_vit-h.safetensors
### Stable Diffusion 的最新模型版本及其特性 Stable Diffusion 是一种基于深度学习的开源项目,专注于生成高质量图像。其最新的模型版本通常会随着社区的发展和技术的进步而不断更新。以下是关于 Stable Diffusion 最新模型版本的相关信息: #### 1. **Stable Diffusion XL (SDXL)** Stable Diffusion XL 是当前最先进的版本之一,它在多个维度上进行了改进,特别是在图像质量和细节表现力方面有显著提升[^2]。该版本的主要特点如下: - **发布时间**: SDXL 的首个版本于 2023 年发布,并随后推出了多个迭代版本以优化性能和稳定性。 - **特性**: - 更高的分辨率支持能力,能够生成更清晰、更细腻的图像。 - 支持更高的多样性控制参数,允许用户调整生成图像的具体属性(如对比度、颜色饱和度等)。 - 增强了对复杂场景的理解能力,尤其是在处理多对象或多背景的情况下表现出色。 #### 2. **Stable Diffusion Turbo** 作为另一个重要的变体,Stable Diffusion Turbo 主要针对速度和效率进行了优化。它的特点是: - **发布时间**: 同样是在 2023 年推出,旨在满足实时应用场景的需求。 - **特性**: - 显著提高了推理速度,在保持较高图像质量的同时降低了计算资源消耗。 - 使用轻量化技术减少内存占用,适合移动设备或其他受限环境下的部署。 #### 3. **其他扩展功能** 除了上述两个核心版本外,Stable Diffusion 还通过多种方式实现图像风格化定制,包括但不限于 Artist 艺术家风格、Checkpoint 预训练大模型、LoRA 微调模型以及 Textual Inversion 文本反转模型[^3]。这些工具使得开发者可以更加灵活地定义自己的创作需求。 --- ### 示例代码:如何检查已安装的 Stable Diffusion 版本 如果已经在本地环境中完成了 Stable Diffusion 的配置,则可以通过以下 Python 脚本来验证所使用的具体版本号: ```python import diffusers print(f"Current Stable Diffusion version: {diffusers.__version__}") ``` 此脚本依赖 `diffusers` 库来获取当前运行中的 Stable Diffusion 模型版本信息。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

安格会魔法

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值