Speech-to-Singing Conversion based on Boundary Equilibrium GAN


作者:Da-Yi Wu
会议:2020 interspeech
单位:台湾国立大学
demo链接, emmm可懂度不是很高
代码实现

abstract

基于GAN的网络将speech信号转成歌唱信号。而且不需要speech的音素序列信息,是一种speech-to-sing的风格转换。过程是:给定输入speech和target singing的F0,通过progressive-growing encoder/decoder结构,生成歌唱信号谱。模型通过boundary equlibrium GAN loss项,可以基于平行/非平行数据学习。

1. introduction

singing voice synthesis是指将一个speech的音色&内容保持不变,而以唱歌的形式呈现出来,旋律可以参考一个给定的歌曲,或者自动生成的旋律。
singing和speech的直接转换很难,因为他们的韵律和音素表示差别很大;此外,在speech中不重要的旋律信息,在singing中必不可少。因此,一段speech可以用多种语速、tone甚至发音的singing呈现。

speech-to-singing(STS)的实现方式可以分为两种:
(1)model-based:用duration module对speech的时长进行放缩;通过F0 model生成F0 contour;通过spectral model修改音色信息,使其像歌唱的形式。生成的歌唱质量取决于音素划分的精度以及musical note的关联程度。
(2)template-based:高质量的vocal作为模板,将speech和template一起输入,一个对齐另一个;template singing中提取reference prosody(包括F0, AP,singing formants-共振峰等)。这些信息被用于align speech的歌唱合成参数估计。也有基于i-vector特征恢复谱参数的方法。

  • 本文是基于GAN的第三种方法,利用了GAN在音乐风格迁移上的成功。本文是基于作者之前的工作【9】的改进:只需要一段speech和target F0,就可以生成singing片段。不需要对齐的音素信息和template singing segment,缺点是合成的语音质量不高。
  • 本文的改进有:(1)将卷积结构替换成一个层次结构逐步生成输出,在audio 生成中已经被应用【14-17】;(2)【9】仅用到平行数据,本文添加非平行数据训练;应用基于boundary-equilibrium GAN的网络【18】;
    (3)使用【19】中提到的random resampling更好的解码文本和韵律信息;(4)MelGAN vocoder改善语音质量。

2. method

在这里插入图片描述
完成的是spec-to-spec的转换。encoder-decoder的结构,具体参考图1。

2.1. Input processing
  • Log-magnitude representation:计算mel-spectrogram的幅度谱,然后逐元素求对数;

  • Random resampling (RR): speech中包含速度和韵律的信息,对speech进行随机采样,更好的解耦文本和韵律信息。把speech分成16-32的随机长度帧,然后拉伸0.5—2的因子。

  • Singing melody contour 使用CREPE提取monophonic pitch tracker,然后将连续的F0通过librosa package中的Hz-to-MIDI function 将F0转成128个MIDI notes 中的一个。one-hot vector表示midi note。

  • Time stretching (TS):本文是spectral-to-spectral的转换,输入输出都是连续的。将输入线性插值到和target(F0 contour)等长。

2.2 encoder and decoder

在这里插入图片描述

2.3. BEGAN

BEGAN–energy-based GAN architecture
在这里插入图片描述
L=encoder(in)和input求损失,
r越小,说明对于BEGAN,真的更好,with better quality but less diversity
r越大,假的更好:improve the diversity but lower the quality.

2.5 MelGAN 作为vocoder

3. Experimental Validation

3.1. Setup
paired data:NUS data
unpaired data:DAMP data

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值