MusicLM:Generating Music From Text

abstract

  • MusicLM:可以根据一段文本描述,比如“a calming violin melody backed by a distorted guitar riff”生成对应的24K音乐,音质和文本一致性优于base;
  • condition输入可以是text,也可以是哼唱或者吹口哨这样的旋律,然后按照文本描述生成乐曲。
  • 开源了MusicCaps,有专家标注的misci–text caption,5.5k条,用于评估模型

introduction

  • 常规的audio generation(包括TTS,lyrics-conditioned music generation),都需要时长对齐信息。
  • 受启发于text-to-image generation,可以通过high-level caption,生成序列信息。diffsound(demo),使用文本作为条件,生成声学事件,使用diffusion作为decoder预测mel-sep,提升生成质量和速度。缺点是,只能生成数秒的音频。
  • AudioLM可以生成长的、高质量的语音。(输入是speech量化后的tokens?)
  • 音频生成的难点:(1)caption数据难以建立:对声音的文本描述不会像图像那么准确,可能包含声学场景(比如在森林里,火车站的录制环境),音乐风格(不同的乐器,音色,旋律等)。(2)声音是有时间尺度的,因此文本描述的注释作用明显弱于图像标题
  • 使用AudioLM作为生成的一部分组件,同时将其拓展为内容可编辑的使用方式(本文实际使用的是SoundStream作为encodec,24Khz的音频,使用6kbps编码)。
  • music-text pair数据稀疏的问题:使用预训练的模型MuLan
    • MuLan原理:可以将音乐和对应的文本描述映射到同一空间。因此,训练MusicLM的时候,music通过MuLan生成embedding,作为训练输入;推理阶段,text通过MuLan生成embedding,作为预测输入。
    • 训练过程只用到music audio数据。为了评估模型,开源了MusicCaps数据集,有专家标注的misic–text caption,5.5k条
  • 因为文本准确描述想要生成的音乐很难,因此支持添加额外的输入,比如哼唱,在此和文本提示下生成旋律一致的音乐。
  • 对于音乐版权的合规性问题,使用MuLan提取的embedding作为训练输入,生成的序列和训练集合有明显不同。

method

Representation and Tokenization of Audio and Text

  • 三个预训练的模型用于提取tokenize
  • SoundStream提取acoustic tokens用于高质量合成;(soundstream将音频量化成多维tokens,然后通过decoder再重建为高质量音频)
  • w2v-BERT提取semantic tokens作为长时一致性生成(k-means聚类,得到有丰富含义的内容表征);
  • MuLan提取music embedding(train stage)或者text embedding(infer stage)

Hierarchical Modeling of Audio Representations

在这里插入图片描述

  • stage1:mulan提取的embedding通过12个RVQ进行量化,然后通过semantic modeling过程映射为w2v-BERT提取的semantic token特征;
  • stage2:mulan RVQ+semantic token通过acoustic modeling过程,映射为soundstream提取的acoustic token特征。为了保证长时生成,生成过程是一个coarse-to-fine的阶段,参考了audioLM的过程。

experiment

setup

  • 两阶段建模的模型都是transformer-decoder only,24 layers, 16 attention heads,
  • MuLan使用的开源模型,使用 Free Music Archive (FMA) dataset 训练SoundStream and w2v-BERT;
  • AudioLM两阶段模型训练:five million audio clips(~280k hours)。semantic stage,随机裁剪30s音频;acoustic stage,随机裁剪10s音频;AudioLM细粒度的建模基于3s音频。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值