SQL:窗口函数之OVER()

本文详细介绍了在Impala平台上如何使用OVER函数进行窗口操作,包括无条件汇总、按排序和分区的累计结果,以及与LEAD/LAG函数配合获取前后行数据,帮助读者理解窗口函数在数据分析中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

窗口函数 通用格式 “函数 OVER (PARTITION BY 分组 ORDER BY 排序依据 升降序)”。
这里记录下OVER() 以及搭配LEAD/LAG函数的使用方法(执行平台Impala)

OVER函数

1、不加条件的OVER函数——得到所有的汇总结果

select  day1, sale_money, sum(sale_money) over () as `cum_money`  from t

结果1

2、仅有排序的OVER函数——得到按顺序的累计结果

select  day1, sale_money, sum(sale_money) over (order by day1) as `cum_money`  from t

结果2

3、加分区条件的OVER函数——得到分区的汇总结果

select  day1, sale_money, sum(sale_money) over (partition by month(day1)) as `cum_money`  from t

结果3

4、加分区、排序条件的OVER函数——得到按分区后按顺序的累计结果

select  day1, sale_money, sum(sale_money) over (partition by month(day1) order by day1) as `cum_money`  from t

结果4

5、加窗口大小条件的OVER函数

current row 当前行
n preceding:往前n行
n following:往后n行
unbounded: 起点,对应前面的n

5-1 当前行和前1行

select  day1, sale_money, sum(sale_money) over (order by day1 rows between 1 preceding and current row) as `cum_money`  from t

在这里插入图片描述

5-2 当前行和前面所有行

select  day1, sale_money, sum(sale_money) over (order by day1 rows between unbounded preceding and current row) as `cum_money`  from t

在这里插入图片描述

5-3 当前行和后面所有行

select  day1, sale_money, sum(sale_money) over (order by day1 rows between current row and unbounded following) as `cum_money`  from t

在这里插入图片描述

搭配LEAD/LAG函数

lead(col,n) :往后第n行
lag(col,n) :往前第n行

-- 日期按升序排后,取当前往后的第2条数据
select day1, sale_money, 
       lead(day1,2) over (order by day1 asc) as `后第2行day1`, 
       lead(day1,2) over (order by day1 asc) as `后第2行sale_money`
from t

在这里插入图片描述

-- 日期按升序排后,取当前往前的第2条数据
select day1, sale_money, 
       lag(day1,2) over (order by day1 asc) as `前第2行day1`, 
       lag(day1,2) over (order by day1 asc) as `前第2行sale_money`
from t

在这里插入图片描述

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值