普通算法:
将小于n的数分别除以小于等于n的开方的数,若有数可以被整除,则返回该数不为质数;只有该数被小于等于n的开方的数都不能整除时,该数才为质数。
public static int countPrimes(int n){
int count=0;
for (int i = 2; i < n; i++) {
boolean flag=true;
for (int j = 2; j <= Math.sqrt(i); j++) {
if (i%j==0){
flag=false;
break;
}
}
if (flag)
count++;
}
return count;
}
优化算法:
创建一个长度为n的布尔型数组,将大于等于2小于n的数,与另一个相乘小于n的数,组成的乘数存到数组中。
public static int countPrimes2(int n) {
boolean[] prime=new boolean[n];
int count=0;
for (int i = 2; i < n; i++) {
if (prime[i]==false){
count++;
for (int j = i; j*i < n; j++) {
prime[j*i]=true;
}
}
}
return count;
}
第二种算法较第一种算法,减少了多余、重复的计算。