计算小于n的质数的个数

这篇博客记录了一种用于判断质数和计算质数个数的高效算法,该算法来源于LeetCode题解。通过使用位运算和动态更新,能够在O(n log log n)的时间复杂度内完成任务。核心代码包括一个动态维护的质数表,并通过平方根优化了内层循环。此算法对于理解和提升数学及算法能力极具价值。
摘要由CSDN通过智能技术生成

这是leetcode上的一道简单题,但其中用了不少的数学知识(数学yyds);

因为这篇博客是我的一篇笔记,用来记录平时积累的知识。

而最近比较大的收获就是下面这个判断质数和计算质数个数的算法,这个算法的详细介绍来自leetcode题解。

以下附上实现代码(依然源自leetcode)

    int countPrimes(int n) {
        vector<int> isPrime(n, 1);
        int ans = 0;
        for (int i = 2; i < n; ++i) {
            if (isPrime[i]) {
                ans += 1;
                if ((long long)i * i < n) {
                    for (int j = i * i; j < n; j += i) {
                        isPrime[j] = 0;
                    }
                }
            }
        }
        return ans;
    }

共勉!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值