矩阵分析与应用(23)

学习来源:《矩阵分析与应用》 张贤达 清华大学出版社

矩阵求导

一、标量、向量、矩阵和函数

        对于一个函数 

function(input)

根据函数 function 和自变量 input 的不同类型可以将函数 f(x) 分为不同的种类。

1. 函数为标量

        function 为实值标量函数,用 \bar{f} 表示。

1.1 自变量为标量

        函数的自变量是标量,用 \bar{x} 表示。如:

\bar{f}(\bar{x})=\bar{x}+1

1.2 自变量为向量

        函数的自变量是向量,用 x 表示。如:

x=[x_1,x_2,x_3]^T

\bar{f}(x)=a_1x_1^2+a_2x_2^2+a_3x_3^2+a_4x_1x_2

1.3 自变量为矩阵

        函数的自变量是矩阵,用 X 表示。如:

X=\begin{bmatrix} x_{11} &x_{12} \\ x_{21} & x_{22} \end{bmatrix}

\bar{f}(X)=a_1x_{11}^2+a_2x_{12}^2+a_3x_{21}^2+a_4x_{22}^2

2. 函数为向量

        function 为向量函数,用 f 表示。

2.1 自变量为标量

f_{3\times 1}(\bar{x})=\begin{bmatrix} f_1(\bar{x})\\ f_2(\bar{x}) \\ f_3(\bar{x}) \end{bmatrix}=\begin{bmatrix} \bar{x}+1\\ 2\bar{x}+1 \\ 3\bar{x}+1 \end{bmatrix}

2.2 自变量为向量

x=[x_1,x_2,x_3]^T

f_{3\times 1}(x)=\begin{bmatrix} f_1(x)\\ f_2(x) \\ f_3(x) \end{bmatrix}=\begin{bmatrix} x_1+x_2+x_3\\x_1+2x_2+3x_3 \\ x_1^2+x_2^2+x_3^2 \end{bmatrix}

2.3 自变量为矩阵

X=\begin{bmatrix} x_{11} &x_{12} \\ x_{21} & x_{22} \end{bmatrix}

f_{3\times 1}(X)=\begin{bmatrix} f_1(X)\\ f_2(X) \\ f_3(X) \end{bmatrix}=\begin{bmatrix} x_{11}+x_{12}+x_{x_21}+x_{22}\\ x_{11}x_{12}+x_{21}x_{22}+x_{12}x_{21} \\ 2x_{11}+3x_{22}+4x_{12} \end{bmatrix}

3. 函数为矩阵

        function 为矩阵函数,用 F 表示。

3.1 自变量为标量

F_{3\times 2}(\bar{x})=\begin{bmatrix} f_{11}(\bar{x}) &f_{12}(\bar{x}) \\ f_{21}(\bar{x}) &f_{22}(\bar{x}) \\ f_{31}(\bar{x}) & f_{32}(\bar{x}) \end{bmatrix}=\begin{bmatrix} \bar{x}+1 &\bar{x}+2 \\ \bar{x}^2+1 & \bar{x}^2+2\\ \bar{x}^3+1 & \bar{x}^3+2 \end{bmatrix}

3.2 自变量为向量

x=[x_1,x_2,x_3]^T

F_{3\times 2}(x)=\begin{bmatrix} f_{11}(x) &f_{12}(x) \\ f_{21}(x) &f_{22}(x) \\ f_{31}(x) & f_{32}(x) \end{bmatrix}=\begin{bmatrix} x_1+x_2+x_3 +1&x_1+x_2+x_3+2 \\ x_1^2+x_2+x_3 & x_1+x_2^2+x_3^2\\ x_1+2x_2+3x_3 & 3x_1+2x_2+x_3 \end{bmatrix}

3.3 自变量为矩阵

F_{3\times 2}(X)=\begin{bmatrix} f_{11}(X) &f_{12}(X) \\ f_{21}(X) &f_{22}(X) \\ f_{31}(X) & f_{32}(X) \end{bmatrix}=\begin{bmatrix} x_{11}+x_{12}+x_{21} +1&x_{12}+x_{21}+x_{22}+2 \\ 2x_{11}+3x_{12}+4x_{21} +2 & 3x_{11}+4x_{12}+5x_{21} +3\\ 7x_{11}+x_{12}+4x_{21} & x_{11}+5x_{12}+x_{21} +2\end{bmatrix}

二、求导

        求导的本质就是函数 function 中的每个 f 分别对自变量中的每个元素求偏导,最终将结果写成向量、矩阵的形式。

        例如:有

x=[x_1,x_2,x_3]^T

\bar{f} (x)=x_1^2+x_1x_2+x_2x_3

列向量形式的求导结果:

\frac{\partial \bar{f} (x)}{\partial x_{3\times 1}}=\begin{bmatrix} \frac{\partial \bar{f}}{\partial x_1}\\ \frac{\partial \bar{f}}{\partial x_2} \\ \frac{\partial \bar{f}}{\partial x_3} \end{bmatrix}=\begin{bmatrix} 2x_1+x_2\\ x_1+x_3 \\ x_2 \end{bmatrix}

以行向量的形式展开:

\frac{\partial\bar{f} (x)}{\partial x_{3\times 1}^T}=\left [ \frac{\partial \bar{f}}{\partial x_1},\frac{\partial \bar{f}}{\partial x_2},\frac{\partial \bar{f}}{\partial x_3} \right ]=\left [ 2x_1+x_2,x_1+x_3,x_2 \right ]

因此,若函数 function 有 m 个 f ,自变量 input 有 n 个元素,则求导后有 m\times n 个结果,这 m\times n 个结果可以按行向量排列、列向量排列或以矩阵形式排列。

三、矩阵求导结果的布局

1. 自变量为向量 x=[x_1,x_2,\cdots ,x_n]^T 的实值函数 \bar{f} (x) 

1.1 行向量偏导形式:

D_x\bar{f} (x)=\frac{\partial\bar{f} (x)}{\partial x^T}=\left [ \frac{\partial \bar{f}}{\partial x_1} ,\frac{\partial \bar{f}}{\partial x_2},\cdots ,\frac{\partial \bar{f}}{\partial x_n}\right ]

1.2 列向量偏导形式(梯度向量形式):

\bigtriangledown _x\bar{f} (x)=\frac{\partial \bar{f}(x)}{\partial x^T}=\left [ \frac{\partial \bar{f}}{\partial x_1}, \frac{\partial\bar{f}}{\partial x_2},\cdots , \frac{\partial \bar{f}}{\partial x_n} \right ]^T

与 D_x\bar{f}(x) 互为转置。

2. 自变量为矩阵 X_{m\times n}=(x_ij)_{i=1,j=1}^{m,n} 的实值函数 f(X) 

2.1 行向量偏导形式

        先把矩阵 X 按列划分转化为一个个列向量,再按顺序组成一个列向量,即:

vec(X)=\left [ x_{11},x{21},\cdots ,x_{m1},x_{m2},\cdots ,x_{1n},x_{2n},\cdots ,x_{mn} \right ]^T

然后按照函数为标量函数,自变量为向量的形式求导,得到:

D_{vec_X}\bar{f}(X)=\frac{\partial \bar{f} (X)}{\partial vec^T(X)}=\left [ \frac{\partial \bar{f}}{\partial x_{11}},\frac{\partial \bar{f}}{\partial x_{21}} ,\cdots ,\frac{\partial \bar{f}}{\partial x_{m1}},\frac{\partial \bar{f}}{\partial x_{12}},\cdots ,\frac{\partial \bar{f}}{\partial x_{m2}},\cdots ,\frac{\partial \bar{f}}{\partial x_{1n}},\frac{\partial \bar{f}}{\partial x_{mn}}\right ]

2.2 Jacobian 矩阵形式

        先把自变量 X 转置,再对转置后的每个位置的元素求偏导,结果布局与 X 转置后的布局一致。

D_X\bar{f} (X)=\frac{\partial \bar{f}(X)}{\partial X_{m\times n}^T}=\begin{bmatrix} \frac{\partial \bar{f}}{\partial x_{11}} & \frac{\partial \bar{f}}{\partial x_{21}} &\cdots & \frac{\partial \bar{f}}{\partial x_{m1}} \\ \frac{\partial \bar{f}}{\partial x_{12}} & \frac{\partial \bar{f}}{\partial x_{22}} &\cdots & \frac{\partial \bar{f}}{\partial x_{m2}} \\ \vdots & \vdots & &\vdots \\ \frac{\partial \bar{f}}{\partial x_{1n}} & \frac{\partial \bar{f}}{\partial x_{2n}} &\cdots & \frac{\partial \bar{f}}{\partial x_{mn}} \end{bmatrix}_{n\times m}

2.3 列向量偏导形式(梯度向量形式)

        先把自变量 X 按 2.1 中的操作列向量化,再按 1.2 的式子进行求导:

\bigtriangledown _{vec_X}\bar{f}(X)=\frac{\partial \bar{f} (X)}{\partial vec(X)}=\left [ \frac{\partial \bar{f}}{\partial x_{11}},\frac{\partial \bar{f}}{\partial x_{21}} ,\cdots ,\frac{\partial \bar{f}}{\partial x_{m1}},\frac{\partial \bar{f}}{\partial x_{12}},\cdots ,\frac{\partial \bar{f}}{\partial x_{m2}},\cdots ,\frac{\partial \bar{f}}{\partial x_{1n}},\frac{\partial \bar{f}}{\partial x_{mn}}\right ]^T

2.4 梯度矩阵形式

        直接对自变量 X 的每个位置的元素逐个求偏导,结果布局与 X 的布局一致。

\bigtriangledown _X\bar{f} (X)=\frac{\partial \bar{f}(X)}{\partial X_{m\times n}}=\begin{bmatrix} \frac{\partial \bar{f}}{\partial x_{11}} & \frac{\partial \bar{f}}{\partial x_{12}} &\cdots & \frac{\partial \bar{f}}{\partial x_{1n}} \\ \frac{\partial \bar{f}}{\partial x_{21}} & \frac{\partial \bar{f}}{\partial x_{22}} &\cdots & \frac{\partial \bar{f}}{\partial x_{2n}} \\ \vdots & \vdots & &\vdots \\ \frac{\partial \bar{f}}{\partial x_{m1}} & \frac{\partial \bar{f}}{\partial x_{m2}} &\cdots & \frac{\partial \bar{f}}{\partial x_{mn}} \end{bmatrix}_{m\times n}

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 《矩阵分析应用》是由张贤达编著的一本关于矩阵分析及其在应用中的使用的教材。本书主要介绍了矩阵的基本概念、性质和运算,并探讨了矩阵在线性代数、微积分、概率统计、信号处理等学科中的应用。 在矩阵分析的基础部分,本书详细阐述了矩阵的定义、矩阵的运算法则,以及线性方程组和特征值问题等。这些基础知识对于进一步学习矩阵应用具有重要的指导作用。 在矩阵应用部分,本书首先介绍了矩阵在线性方程组求解、线性变换、向量空间等方面的应用。其次,本书还讨论了矩阵在微积分中的应用,如矩阵微积分和矩阵微分方程等。此外,本书还深入介绍了矩阵在概率统计、信号处理、图论及最优化等领域中的重要应用,如随机矩阵、协方差矩阵、图的邻接矩阵和最小二乘法等。 总的来说,张贤达的《矩阵分析应用》是一本内容丰富、系统全面的矩阵分析教材。通过阅读本书,读者可以逐步掌握矩阵的基本理论和运算,并了解其在不同学科中的应用。无论是对于即将学习矩阵分析的学生,还是对于已经有一定矩阵基础的科研人员和工程师,本书都是一本实用的参考书,可以提供帮助和指导。 ### 回答2: 《矩阵分析应用》是由张贤达编写的一本专门介绍矩阵分析应用的教材。该书以系统的方式介绍了矩阵的理论、性质和基本运算,同时也涵盖了矩阵在各种应用领域中的具体应用。这本教材适用于数学、物理、工程、计算机科学等各个领域的学习者。 在矩阵分析的理论方面,书中首先介绍了矩阵的基本概念和运算法则,包括行、列、元素、转置、加减乘除等,同时也解释了矩阵的相等和乘积等性质。然后,书中详细讲解了特殊类型的矩阵,如对称矩阵、三角矩阵、奇异矩阵等,并介绍了它们的特征和性质。此外,书中还涉及到矩阵的线性组合、秩、行列式、逆矩阵和特征值等重要概念和定理。 在应用方面,该书展示了矩阵在各个领域中的广泛应用。首先,矩阵在线性代数中的应用包括解线性方程组、线性变换、特征值问题等。其次,矩阵在工程中的应用包括电路分析、力学分析、信号处理等。最后,矩阵在计算机科学中的应用包括图像处理、机器学习、数据挖掘等。 总之,《矩阵分析应用》是一本全面介绍矩阵分析应用的教材,在理论和应用方面都给予了读者充分的讲解和示例。无论是对于学术研究者还是专业技术人员,该书都是一本很好的参考书籍。它帮助读者建立了对矩阵的全面认识,为进一步的学习和应用提供了坚实的基础。 ### 回答3: 《张贤达矩阵分析应用pdf》是张贤达教授撰写的一本关于矩阵分析应用的教材。矩阵分析是数学中的分支之一,它研究矩阵的性质和运算规律,并将其应用于各种领域。 这本教材以系统介绍矩阵分析为主线,内容包括线性空间、线性变换、矩阵的运算与性质、特征值与特征向量等基础内容。此外,它还涵盖了矩阵的迹、行列式、正交变换、对称矩阵等高级内容,以及广义逆矩阵、半正定矩阵等一些应用领域。 这本教材的优点是内容全面,理论与实践相结合。作者以通俗易懂的语言解释了复杂的数学概念,并且通过大量的例题和习题帮助读者巩固所学知识。此外,教材还提供了一些实际应用案例,如图像处理、信号处理等领域,使读者能够将所学知识应用于实际问题中。 针对该教材的读者群体主要包括数学、工程、物理等相关专业的本科生和研究生。对于想要深入学习矩阵分析应用于实际问题的读者来说,这本教材是一本很好的参考书。 总体来说,《张贤达矩阵分析应用pdf》是一本内容丰富、易于理解且具有实际应用价值的教材。无论是作为教学辅助资料还是自学工具,它都能帮助读者掌握矩阵分析的核心概念和方法,并将其应用于实际问题中。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值