矩阵分析与应用(5)

学习来源:《矩阵分析与应用》张贤达 清华大学出版社

矩阵的范数与内积

1. 矩阵的内积

        设矩阵 A=(a_{ij})\in R^{n \times n} ,把矩阵 A 的元素按行优先排列成一个列向量

vecA=(a_{11},a_{12},\cdots ,a_{1n},a_{21},a_{22},\cdots ,a_{m1},a_{m2},\cdots ,a_{mn})^T

称向量 vecA 为矩阵 A 按行拉直的列向量。类似地矩阵 A 也可以按列优先展开。

        设 A,B\in R^{n\times n} ,称 

\left \langle A,B \right \rangle=Tr(A^{T}B)=\sum_{i=1}^{n}\sum_{j=1}^{n} a_{ij}b_{ij}=(vecA)^TvecB

为矩阵 A,B 的内积。其中: Tr(A) 为矩阵 A 的迹。

2. 主要性质

        1)交换律: \left \langle A,B \right \rangle=\left \langle B,A \right \rangle ;

        2)其次性: \left \langle kA,B \right \rangle=k\left \langle A,B \right \rangle ;

        3)分配律: \left \langle A+B,C \right \rangle=\left \langle A,C \right \rangle+\left \langle B,C \right \rangle ;

        4)非负性: \left \langle A,A \right \rangle\geqslant 0 , 当且仅当 A=0 时,\left \langle A,A \right \rangle=0

3. 矩阵的范数

        对任意一个矩阵 A\in R^{m \times n} ,用 \left \| A \right \| 表示按照某一确定法则与矩阵 A 相对应的一个实数,且满足:

        1)对于任意 A 有 \left \| A \right \|\geqslant 0 ,当且仅当 A=0 时, \left \| A \right \|=0 ;

        2)对任意实数 k 有 \left \| kA \right \|=\left | k \right |\left \| A \right \| ;

        3)矩阵范数满足三角不等式 \left \| A+B \right \|\leqslant \left \| A \right \|+\left \| B \right \| ;

        4)两个矩阵乘积的范数小于或等于两个矩阵范数的乘积,即 \left \| AB \right \|\leqslant \left \| A \right \|\left \| B \right \| 。

那么称 \left \| A \right \| 为矩阵 A 的范数。

4. 例:

         n \times n 矩阵 A 的实值函数

f(A)=\sum_{i=1}^{n}\sum_{j=1}^{n}\left | a_{ij} \right |

可以验证:

        1) f(A)\geqslant 0 ,并且当 A=0 即 a_{ij}=0 时, f(A)=0 。

        2) f(cA)=\sum_{i=1}^{n}\sum_{j=1}^{n}\left | ca_{ij} \right |=\left | c \right |\sum_{i=1}^{n}\sum_{j=1}^{n}\left | a_{ij} \right |=\left | c \right |f(A) 。

        3) f(A+B)=\sum_{i=1}^{n}\sum_{j=1}^{n}(\left | a_{ij}+b_{ij} \right |)\leqslant \sum_{i=1}^{n}\sum_{j=1}^{n}(\left | a_{ij} \right |+\left | b_{ij} \right |)=f(A)+f(B)

        4) 对于两个矩阵的乘积,有 

                                              f(AB)=\sum_{i=1}^{n}\sum_{j=1}^{n}\left | \sum_{k=1}^{n}a_{ik}b_{kj} \right | 

                                                           \leqslant \sum_{i=1}^{n}\sum_{j=1}^{n}\sum_{k=1}^{n}\left | a_{ik} \right |\left | b_{kj} \right |

                                                           \leqslant \sum_{i=1}^{n}\sum_{j=1}^{n}(\sum_{k=1}^{n}\left | a_{ik} \right |\sum_{k=1}^{n}\left | b_{kj} \right |)

                                                           =f(A)f(B)

        因此,实函数

 f(A)=\sum_{i=1}^{n}\sum_{j=1}^{n}\left | a_{ij} \right | 

        是一种矩阵 A 的范数。

5. 经典矩阵范数

        1)Frobenius 范数

\left \| A \right \|_{F}=(\sum_{i=1}^{n}\sum_{k=1}^{n}\left | a_{ij} \right |^2)^\frac{1}{2}

        这一定义可以视为向量的 Euclidean 范数对按照矩阵各行排列的 “长向量”

x=[a_{11},\cdots ,a_{1n},a_{21},\cdots ,a_{2n},\cdots ,a_{m1},\cdots ,a_{mn}]^T

        的推广。

        2) l_{p} 范数

\left \| A \right \|_p=\max_{x\neq 0}\frac{\left \| Ax \right \|_p}{\left \| x \right \|_p}

        式中, \left \| x \right \|_p 是向量 x 的 l_{p} 范数。

        3)行和范数

\left \| A \right \|_{row}=\max_{1\leqslant i\leqslant m}\left \{ \sum_{j=1}^{n}\left | a_{ij} \right | \right \}

        4)列和范数

\left \| A \right \|_{col}=\max_{1\leqslant j\leqslant n}\left \{ \sum_{i=1}^{m}\left | a_{ij} \right | \right \}

        5)谱范数

\left \| A \right \|_{spec} =\sigma _{max}=\sqrt{\lambda _{max}}

        式中, \sigma_{max} 是矩阵 A 的的最大奇异值,即 A^HA 的最大特征值 \lambda _{max} 的正平方根。

        6)Mahalanobis 范数

\left \| A \right \|_\Omega =\sqrt{tr(A^H\Omega A)}

        式中, \Omega 为正定矩阵(所有特征值大于零的矩阵)。

6. 矩阵的内积与范数之间的关系

        1) Cauchy-Schwartz 不等式

\left | \left \langle A,B \right \rangle \right |^2\leqslant \left \| A \right \|^2\left \| B \right \|^2

        当且仅当 A=cB 时,等号成立。 c 为某个复常数。

        2) Pathagoras 定理

\left \langle A,B \right \rangle=0\Rightarrow \left \| A+B \right \|^2=\left \| A \right \|^2+\left \| B \right \|^2

        3)极化恒等式

Re(\left \langle A,B \right \rangle)=\frac{1}{4}(\left \| A+B \right \|^2-\left \| A-B \right \|^2)

Re(\left \langle A,B \right \rangle)=\frac{1}{2}(\left \| A+B \right \|^2-\left \| A \right \|^2-\left \| B \right \|^2)

        式中, Re\left ( \cdot \right ) 代表取复数的实部。

  • 1
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 《矩阵分析应用》是由张贤达编著的一本关于矩阵分析及其在应用中的使用的教材。本书主要介绍了矩阵的基本概念、性质和运算,并探讨了矩阵线性代数、微积分、概率统计、信号处理等学科中的应用。 在矩阵分析的基础部分,本书详细阐述了矩阵的定义、矩阵的运算法则,以及线性方程组和特征值问题等。这些基础知识对于进一步学习矩阵应用具有重要的指导作用。 在矩阵应用部分,本书首先介绍了矩阵在线性方程组求解、线性变换、向量空间等方面的应用。其次,本书还讨论了矩阵在微积分中的应用,如矩阵微积分和矩阵微分方程等。此外,本书还深入介绍了矩阵在概率统计、信号处理、图论及最优化等领域中的重要应用,如随机矩阵、协方差矩阵、图的邻接矩阵和最小二乘法等。 总的来说,张贤达的《矩阵分析应用》是一本内容丰富、系统全面的矩阵分析教材。通过阅读本书,读者可以逐步掌握矩阵的基本理论和运算,并了解其在不同学科中的应用。无论是对于即将学习矩阵分析的学生,还是对于已经有一定矩阵基础的科研人员和工程师,本书都是一本实用的参考书,可以提供帮助和指导。 ### 回答2: 《矩阵分析应用》是由张贤达编写的一本专门介绍矩阵分析应用的教材。该书以系统的方式介绍了矩阵的理论、性质和基本运算,同时也涵盖了矩阵在各种应用领域中的具体应用。这本教材适用于数学、物理、工程、计算机科学等各个领域的学习者。 在矩阵分析的理论方面,书中首先介绍了矩阵的基本概念和运算法则,包括行、列、元素、转置、加减乘除等,同时也解释了矩阵的相等和乘积等性质。然后,书中详细讲解了特殊类型的矩阵,如对称矩阵、三角矩阵、奇异矩阵等,并介绍了它们的特征和性质。此外,书中还涉及到矩阵的线性组合、秩、行列式、逆矩阵和特征值等重要概念和定理。 在应用方面,该书展示了矩阵在各个领域中的广泛应用。首先,矩阵线性代数中的应用包括解线性方程组、线性变换、特征值问题等。其次,矩阵在工程中的应用包括电路分析、力学分析、信号处理等。最后,矩阵在计算机科学中的应用包括图像处理、机器学习、数据挖掘等。 总之,《矩阵分析应用》是一本全面介绍矩阵分析应用的教材,在理论和应用方面都给予了读者充分的讲解和示例。无论是对于学术研究者还是专业技术人员,该书都是一本很好的参考书籍。它帮助读者建立了对矩阵的全面认识,为进一步的学习和应用提供了坚实的基础。 ### 回答3: 《张贤达矩阵分析应用pdf》是张贤达教授撰写的一本关于矩阵分析应用的教材。矩阵分析是数学中的分支之一,它研究矩阵的性质和运算规律,并将其应用于各种领域。 这本教材以系统介绍矩阵分析为主线,内容包括线性空间、线性变换、矩阵的运算与性质、特征值与特征向量等基础内容。此外,它还涵盖了矩阵的迹、行列式、正交变换、对称矩阵等高级内容,以及广义逆矩阵、半正定矩阵等一些应用领域。 这本教材的优点是内容全面,理论与实践相结合。作者以通俗易懂的语言解释了复杂的数学概念,并且通过大量的例题和习题帮助读者巩固所学知识。此外,教材还提供了一些实际应用案例,如图像处理、信号处理等领域,使读者能够将所学知识应用于实际问题中。 针对该教材的读者群体主要包括数学、工程、物理等相关专业的本科生和研究生。对于想要深入学习矩阵分析应用于实际问题的读者来说,这本教材是一本很好的参考书。 总体来说,《张贤达矩阵分析应用pdf》是一本内容丰富、易于理解且具有实际应用价值的教材。无论是作为教学辅助资料还是自学工具,它都能帮助读者掌握矩阵分析的核心概念和方法,并将其应用于实际问题中。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值