韩信走马分油
题目内容:
泊松是法国数学家、物理学家和力学家。他一生致力科学事业,成果颇多。有许多著名的公式定理以他的名字命名,比如概率论
中著名的泊松分布。 有一次闲暇时,他提出过一个有趣的问题,后称为:“泊松分酒”。在我国古代也提出过类似问题,遗憾
的是没有进行彻底探索,其中流传较多是:“韩信走马分油”问题。 有3个容器,容量分别为12升,8升,5升。其中12升中装
满油,另外两个空着。要求你只用3个容器操作,最后使得某个容器中正好有6升油。 下面的列表是可能的操作状态记录:12,0,0
4,8,0
4,3,5
9,3,0
9,0,3
1,8,3
1,6,5
每行3个数据,分别表示12,8,6升容器中的油量
第一行表示初始状态,第二行表示把12升倒入8升容器后的状态,第三行是8升倒入5升,…
当然,同一个题目可能有多种不同的正确操作步骤。 本题目的要求是,请你编写程序,由用户输入:各个容器的容量,开始的
状态,和要求的目标油量,程序则通过计算输出是否可能分成功-“Y”,“N”。
例如,用户输入:
12,8,5,12,0,0,6
用户输入的前三个数是容器容量(由大到小),接下来三个数是三个容器开始时的油量配置,最后一个数是要求得到的油量(放在
哪个容器里得到都可以) 则程序可以输出“Y”
输入描述
各个容器的容量,开始的状态,和要求的目标油量
输出描述
是否可能分成功-“Y”,“N”
输入样例
12,8,5,12,0,0,6
输出样例
Y
灵机一现想到了前两天学的A*启发式搜索,感觉解决这种问题非常完美, 只过了校oj也不知道水不水之后到原网站上试试
#include<iostream>
#include<cstdio>
#include<queue>
#include<vector>
using namespace std;
int r[3], n;
int a[3], p;
bool dfs(int v, int s, int pre)
{
if (s > p) return false;
for (int i = 0; i < 3; i++)
if (a[i] == n) return true;
for (int i = 0; i < 3; i++)
{
if (i != v && pre != i)
{
int sum = a[v] + a[i];
int ti = a[i], tv = a[v];
if (sum >= r[i])
a[i] = r[i], sum -= r[i];
else
sum = 0, a[i] = sum;
a[v] = sum;
if (dfs(v, s++, pre)) return true;
if (dfs(i, s++, v)) return true;
a[i] = ti;
a[v] = tv;
}
}
return false;
}
int main()
{
ios::sync_with_stdio(false);
cin >> r[0] >> r[1] >> r[2];
for (int i = 0; i < 3; i++)
cin >> a[i];
for(int i = 0; i <3; i++)
if (a[i] == n)
{
cout << "Y" << endl;
return 0;
}
while (++p)
{
if (dfs(0, 0, -1))
{
cout << "Y" << endl;
return 0;
}
}
cout << "N" << endl;
}