一、获取列名的2种方式
1、链表式
[column for column in df]
[a,b]
2、直接使用 list
print(list(df))
[‘a‘, ‘b‘]
二、删除DataFrame某一行/列、多行内容——drop
1、删除列
A B C D
0 0 1 2 3
1 4 5 6 7
2 8 9 10 11
#Drop columns,两种方法等价
>>>df.drop(['B', 'C'], axis=1)
A D
0 0 3
1 4 7
2 8 11
#删除空列名
df.drop('Unname: 0')
# 第一种方法下删除column一定要指定axis=1,否则会报错
>>> df.drop(['B', 'C'])
ValueError: labels ['B' 'C'] not contained in axis
>>>df.drop(columns=['B', 'C'])
A D
0 0 3
1 4 7
2 8 11
2、删除行
#Drop rows
>>>df.drop([0, 1])
A B C D
2 8 9 10 11
>>> df.drop(index=[0, 1])
A B C D
2 8 9 10 11
3、删除指定行
>>> import pandas as pd
>>> df = {'DataBase':['mysql','test','test','test','test'],'table':['user','student','course','sc','book']}
>>> df = pd.DataFrame(df)
>>> df
DataBase table
0 mysql user
1 test student
2 test course
3 test sc
4 test book
#删除table值为sc的那一行
>>> df.drop(index=(df.loc[(df['table']=='sc')].index))
DataBase table
0 mysql user
1 test student
2 test course
4 test book
三、修改DataFrame的索引
注意:修改索引后,其值全部变为Nan。
df.set_index(["Column"], inplace=True)