Advances in Financial Machine Learning 导言 (附pdf下载链接)

本文是对Marcos L'opez de Prado的《金融机器学习前沿》一书的导言,作者旨在填补学术界与工业界的鸿沟,服务于金融目的,并揭示金融机器学习的复杂性。书中分为数据分析、建模、回测、特征提取和高性能计算五个部分,详细讲解了如何构建适合机器学习的金融数据、应用科学方法、进行回测以及处理复杂问题。适合有机器学习背景的投资专业人士和跨领域数据科学家阅读,要求读者具备广泛的理论基础和Python编程能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引言

机器学习目前已经在图像识别、语音识别、自然语言处理等领域应用广泛,极大地改善了我们的生活体验。作为一名研习金融的学生,我对于机器学习在金融领域的应用尤为感兴趣,因此会找一些相关的书籍和论文来阅读。我发现很多研究机器学习应用于金融的论文都会引用Marcos L’opez de Prado的《Advances in Financial Machine Learning》,也有很多同学向我推荐此书,但看到网上对于这本书的介绍仍较少,故特写此文,欢迎大家来交流~~

To my knowledge, this is the first book to provide a complete and systematic treatment of ML methods specific for finance.

作者

Marcos López de Prado

Marcos L’opez de Prado使用机器学习(ML)算法为机构投资者管理着几只数十亿美元的基金。在过去的20年里,他的工作将高等数学与超级计算技术结合起来,为投资者和公司带来了数十亿美元的净利润。作为合作研究的支持者,Marcos与30多位知名学者共同发表了论文,并在金融领域发表了一些最受欢迎的论文。

自2010年以来,马科斯还在Lawrence Berkeley National Laboratory(美国能源部科学办公室)担任研究员,在计算研究部从事大规模金融领域的数学和高性能计算方面的研究。过去七年里,他一直在康奈尔大学(Cornell University)授课,目前在该校运筹部教授金融大数据和机器学习的研究生

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值