Python-在Windows环境安装libMR

最近在搞Openset代码,不过Github上的开集识别代码大部分都会用到EVT,然后需要安装libMR包。

libMR包在MAC上似乎现在可以直接pip安装,但是windows上pip安装找不到库。

所以解决办法只能是,

下载libMR库文件,本地安装

https://codeload.github.com/Vastlab/libMR/zip/refs/heads/master

下载好之后打开项目,打开README
在这里插入图片描述
里面说:

  1. 要先安装requirements.txt中的包:
    在下载的文件夹下的python文件夹里执行pip install -r requirements.txtconda install --yes --file requirements.txt
  2. 从python文件夹退出来,再执行pip install .
    其实,再cmd里用pip,包安装在自己装的Python里,而在Anaconda PowerShell Prompt里用pip,包是安装在conda的环境里的
    在这里插入图片描述

安装libmr之前需要安装Microsoft C++14,大于14也可以。这个很好安装,直接等报错之后提示去微软下载页面下载即可。
传送门:pip 安装报错 required to install pyproject.toml-based projects

### 回答1: 在PyTorch中使用libmr可以按照以下步骤进行: 1. 安装libmr库(可以参考我之前的回答),确保在系统中已经安装了libmr库文件和头文件。 2. 在PyTorch项目中安装pybind11库和numpy库: ```bash pip install pybind11 pip install numpy ``` 3. 在PyTorch项目中创建一个C++扩展模块,将libmr库链接到这个模块中。以下是一个示例的C++扩展模块(假设文件名为`libmr_ext.cpp`): ```c++ #include <torch/extension.h> #include <libmr/libmr.hpp> using namespace libmr; void compute_median_rank(torch::Tensor& input, torch::Tensor& output) { int N = input.size(0); output = torch::zeros({N}, torch::kFloat32); for (int i = 0; i < N; i++) { Vector target(input[i].data_ptr<float>(), input[i].data_ptr<float>() + input[i].size(0)); output[i] = rank_median(target); } } PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { m.def("compute_median_rank", &compute_median_rank, "Compute median rank using libmr"); } ``` 此代码实现了一个函数`compute_median_rank`,该函数使用libmr库计算给定向量的中位数排名,并将结果存储在输出张量中。 4. 创建一个`setup.py`文件来构建C++扩展模块: ```python from setuptools import setup, Extension from torch.utils import cpp_extension ext_modules = [ cpp_extension.CppExtension( 'libmr_ext', ['libmr_ext.cpp'], libraries=['mr'], include_dirs=['/usr/local/include'], library_dirs=['/usr/local/lib'] ), ] setup( name='libmr_ext', ext_modules=ext_modules, cmdclass={'build_ext': cpp_extension.BuildExtension} ) ``` 该`setup.py`文件将C++扩展模块构建为Python模块,并将libmr库链接到该模块中。您需要根据实际情况修改`libraries`、`include_dirs`和`library_dirs`参数,以确保正确链接libmr库。 5. 在命令行中执行以下命令,编译并安装C++扩展模块: ```bash python setup.py install ``` 完成上述步骤后,您就可以在PyTorch代码中导入并使用`libmr_ext`模块中的函数了。例如: ```python import torch import libmr_ext input = torch.randn(10, 20) output = torch.zeros(10) libmr_ext.compute_median_rank(input, output) print(output) ``` ### 回答2: 在PyTorch中安装libmr是一个多步骤的过程。以下是安装libmr所需的步骤: 1. 首先,确保您的系统上已经安装了pip(用于安装Python包)。可以通过在终端或命令提示符中输入“pip -V”来验证是否已经安装了pip。 2. 然后,打开终端或命令提示符,并使用以下命令安装libmr: ``` pip install cython pip install setuptools pip install git+https://github.com/jmgomezh/texrex ``` 这将自动下载并安装所需的包,包括libmr和其相关依赖项。 3. 安装完成后,您可以在Python脚本或解释器中导入libmr模块,并使用其提供的功能。例如,您可以使用以下代码导入libmr并创建一个模型来训练和预测数据: ``` import libmr # 创建一个libmr模型 model = libmr.MR() # 使用数据来训练模型 model.fit(data) # 使用模型来预测新数据 prediction = model.predict(new_data) ``` 在上述代码中,您需要将“data”替换为您用于训练模型的实际数据,并将“new_data”替换为您要进行预测的新数据。 总结:要在PyTorch中安装libmr,您需要使用pip命令安装相应的包。安装完成后,您可以在Python脚本中导入libmr模块,并使用其提供的功能来训练和预测数据。 ### 回答3: 在PyTorch中安装libmr可以按照以下步骤进行: 1. 首先,确保已经安装了PyTorch。可以使用pip命令来安装PyTorch。例如,可以运行以下命令来安装最新版本的CPU版本: ``` pip install torch ``` 2. 安装libmr之前,我们需要提前安装一些必要的依赖项。打开终端并运行以下命令来安装这些依赖项: ``` sudo apt-get update sudo apt-get install build-essential cmake libboost-all-dev ``` 3. 接下来,我们可以从libmr的GitHub repository中下载源代码。可以使用以下命令来下载代码: ``` git clone https://github.com/mblondel/libmr.git ``` 4. 进入libmr目录: ``` cd libmr ``` 5. 使用cmake来编译和安装libmr。运行以下命令进行编译: ``` cmake . make ``` 6. 安装编译后的libmr库: ``` sudo make install ``` 7. 现在,libmr已经成功安装在系统中。可以在PyTorch代码中引入该库,并开始使用它。 需要注意的是,上述步骤中的第3步到第6步是在Linux环境下的操作。如果你使用的是Windows或其他操作系统,请根据相应的操作系统进行适当的调整。
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值