为什么要学习数据结构
程序 = 数据结构 + 算法
什么数据结构?
数据结构是指相互之间存在一种或多种特定关系的数据元素的集合(官方话术)
数据结构一般分为 逻辑结构和物理结构
逻辑结构:指数据对象中数据元素之间的相互关系
物理结构:是指数据的逻辑结构在计算机的储存形式
举例 (逻辑结构)
集合结构: 是一种松散的结构,集合中的元素同处一个集合中但是它们没有其它的关系。
线性结构: 是一种有序的结构,线性元素中元素之间的关系是一对一的关系 如Java中的LinkedList
树形结构: 树形结构是一层次的嵌套结构。一个树形结构的外层和内层有相似的结构, 所以这种结构多可以递归的表示。个人理解 就是一对多的那种
举例(物理结构)
顺序结构存储:是把数据元素存放在地址连续的储存单元中
链式存储结构:是把数据元素存放在任意的存储单元里,这组存储单元可以是连续的,也可以是不连续的。 但是这些元素都会存放指向下一个元素的信息(指针)
算法
个人理解一个好的程序是离不开算法的 算法就类型于我们现实生活中的艺术(装B吧还是成功的那种) 大话数据结构中的一些例子
算法具有五个基本特征:输入、输出、有穷性、确定性和可行性。
算法具有零个或多个的输入参数 输出参数必须得有 可以return多个 或一个
又穷性 必须有停止的条件 不可能一直无限循环下去
确定性:算法的每一步骤都具有确定的含义 不会出现二义性 输入相同的参数 只有唯一的结果
可行性:算法的每一步都必须是可行的 每一步都能够通过执行有限次数完成
感受一下算法的魅力 经典高斯算法 (sum2)
优秀的算法 应该具备时间效率高(程序执行时间低) 和 存储量低(程序运行时占用内存少)
函数的渐近增长
算法A 2n+3
算法B 3n+1
参数 | 算法A | 算法B |
n=1 | 5 | 4 |
n=2 | 7 | 7 |
n=3 | 9 | 10 |
当n越来越大的时候算法B没有A的效率高(取决于应用场景n的大小)
判断一个算法的效率时,函数中的常数和其他次要项常常可以忽略,而更应该关注主项(最高项)
的阶数
时间复杂度 在进行算法分析是 语句总的执行次数T(n)是关于问题规模n的函数 进而分析T(n)随n的变化情况并确定T(n)的数量及 算法的时间复杂度 也就是算法的时间量度 T(n) = O(f(n))。他表示随问题规模n的增大 算法执行时间的增长了吧和f(n)的增长率相同 (个人理解这个n可以理解为执行次数) 随着输入规模n的增大 T(n)增长最慢的算法为最优算法
由此复杂度定义(这里用大O计法) O(1),O(n) ,O(n^2)
攻略
用常数1取代运行时间中的所有加法常数。
在修改后的运行次数函数中 只保留最高阶项。
如果最高阶项存在且不是1 则去除与这个项相乘的常数。
得到的最后结果就是大O阶。
常数阶 就是只执行一次 O(1)
线性阶 非嵌套循环 线性阶随着问题规模n的扩大 而变大
sum3 = 0;
for i in range(101):
sum3 = sum3 + i;
print(sum3)
它的时间复杂度是 O(n)
平方阶
for i in range(101):
for j in range(101):
print(j)
循环嵌套循环 n^2 增长
时间复杂度为O(n^2)
对数阶
由于每次i*2之后,就距离n更近一步,假设有x个2相乘后大于或等于n,则会退出循环。
于是由2^x = n得到x = log(2)n,所以这个循环的时间复杂度为O(logn)。
空间复杂度?