2022数二真题

选择题

在这里插入图片描述
正确答案:B
解析:A选项可以举反例, y = x 3 y=x^3 y=x3在x=0邻域内是单增,但是 y ′ ( 0 ) = 0 y\prime_{(0)}=0 y(0)=0
C选项也可以举反例 y = x 4 y=x^4 y=x4,则 y ′ = 4 x 3 y\prime=4x^3 y=4x3, y ′ ′ = 12 x 2 y\prime\prime=12x^2 y=12x2
,所以y在x=0邻域内是凹函数,但是 y ′ ′ ( 0 ) = 0 y\prime\prime_{(0)}=0 y(0)=0
选项D而言,因为题目只是说 f ( x ) f(x) f(x) x 0 x_0 x0处有二阶导数,病没有说 f ( x ) f(x) f(x) x 0 x_0 x0附近也有二阶导数且连续。所以很难说 f ( x ) f(x) f(x) x 0 x_0 x0邻域内是凹函数。
而选项B,因为题目说了 f ( x ) f(x) f(x) x 0 x_0 x0处有二阶导数,说明 f ′ ( x ) f^\prime(x) f(x) x 0 x_0 x0邻域内是连续的,又因为选项B里说 f ′ ( x 0 ) > 0 f^\prime(x_0)>0 f(x0)>0,所以在 x 0 x_0 x0的邻域内 f ′ ( x ) > 0 f^\prime(x)>0 f(x)>0也成立,故而单增。 B选项正确




正确答案:A
解题思路: 考察积分的审敛法。
首先我们要知道的是 ∫ a b 1 ( x − a ) p d x \int_a^b\frac{1}{(x-a)^p}dx ab(xa)p1dx ,a是瑕点, 且当 p < 1 p<1 p<1时是收敛的。当 p ≥ 1 p\geq1 p1时是发散的
对于本题来说当 x → 0 + x\to0^+ x0+时, l n x x p ( 1 − x ) 1 − p = l n x x p \frac{lnx}{x^p(1-x)^{1-p}}=\frac{lnx}{x^p} xp(1x)1plnx=xplnx,
l n x x p \frac{lnx}{x^p} xplnx的分子可以不看,因为 l n x lnx lnx的变化速度赶不上 x p x^p xp这种指数级别, 分母是 x p x^p xp,所以当p<1时,积分收敛。
x → 1 − x\to1^- x1时, l n x x p ( 1 − x ) 1 − p = l n x ( 1 − x ) 1 − p = l n ( 1 + x − 1 ) ( 1 − x ) 1 − p = − 1 ( 1 − x ) − p \frac{lnx}{x^p(1-x)^{1-p}}=\frac{lnx}{(1-x)^{1-p}}=\frac{ln(1+x-1)}{(1-x)^{1-p}}=\frac{-1}{(1-x)^{-p}} xp(1x)1plnx=(1x)1plnx=(1x)1pln(1+x1)=(1x)p1, 要想让积分收敛,则要让分母中的 − p < 1 -p<1 p<1,即p>-1,
所以本题的答案就出来了。选A



在这里插入图片描述
正确答案:D
解题思路:
选项A是错的,我们可以举反例 x n = ( − 1 ) n π 2 x_n=(-1)^n\frac{π}{2} xn=(1)n2π, 这个时候 lim ⁡ n → ∞ c o s ( s i n x n ) = c o s 1 \lim_{n\to\infty}cos(sinx_n)=cos1 limncos(sinxn)=cos1
选项B也是错的,反例和A一样, x n = ( − 1 ) n π 2 x_n=(-1)^n\frac{π}{2} xn=(1)n2π, 这时 lim ⁡ n → ∞ s i n ( c o s x n ) = 0 \lim_{n\to\infty}sin(cosx_n)=0 limnsin(cosxn)=0
选型C是错的,反例也是一样, x n = ( − 1 ) n π 2 x_n=(-1)^n\frac{π}{2} xn=(1)n2π,这个时候 lim ⁡ n → ∞ c o s ( s i n x n ) \lim_{n\to\infty}cos(sinx_n) limncos(sinxn)存在,而 lim ⁡ n → ∞ s i n x n \lim_{n\to\infty}sinx_n limnsinxn却不存在。



在这里插入图片描述
正确答案:
解题思路:
先比较 I 1 I_1 I1 I 2 I_2 I2,主要是比较 x 2 \frac{x}{2} 2x l n ( 1 + x ) l n(1+x) ln(1+x)
不妨设 f ( x ) = x 2 − l n ( 1 + x ) f(x)=\frac{x}{2}-ln(1+x) f(x)=2xln(1+x), 则 f ′ ( x ) = 1 2 − 1 1 + x f^\prime(x)=\frac{1}{2}-\frac{1}{1+x} f(x)=211+x1
,当0<x<1时, f ′ ( x ) < 0 f^\prime(x)<0 f(x)<0, 所以 f ( x ) f(x) f(x)单减, 又 f ( 0 ) = 0 f(0)=0 f(0)=0,所以当0<x<1时, f ( x ) < 0 f(x)<0 f(x)<0,即 x 2 < l n ( 1 + x ) \frac{x}{2}<ln(1+x) 2x<ln(1+x),所以
I 1 < I 2 I_1<I_2 I1<I2,然后就能排除选项B,D, 只能从A和C中选了。
而A和C中重点就是比较 I 2 I_2 I2 I 3 I_3 I3的大小关系,我们来作差比较
I 2 − I 3 = l n ( 1 + x ) 1 + c o s x − 2 x 1 + s i n x < x 1 + c o s x − 2 x 1 + s i n x = 2 x 2 + 2 c o s x − 2 x 1 + s i n x < 0 I_2-I_3=\frac{ln(1+x)}{1+cosx}-\frac{2x}{1+sinx}<\frac{x}{1+cosx}-\frac{2x}{1+sinx}=\frac{2x}{2+2cosx}-\frac{2x}{1+sinx}<0 I2I3=1+cosxln(1+x)1+sinx2x<1+cosxx1+sinx2x=2+2cosx2x1+sinx2x<0, (注:当0<x<1时, 2 + 2 c o s x > 2 2+2cosx>2 2+2cosx>2,而 1 + s i n x < 2 1+sinx<2 1+sinx<2),所以 I 2 < I 3 I_2<I_3 I2<I3
(归纳:看到分子里面有 l n ( 1 + x ) ln(1+x) ln(1+x),就应该想到 x > l n ( 1 + x ) x>ln(1+x) x>ln(1+x))



在这里插入图片描述
正确答案: D
解题思路:
判断线性方程组是否有解的问题。 我们首先想到克拉默法则。(注:克莱姆法则判断具有N个方程、N个未知数的线性方程组的解,当方程组的方程个数与未知数的个数不一致时,或者当方程组系数的行列式等于零时,克莱姆法则失效。) 而本题的A矩阵恰好是3阶方阵,可以使用克拉默法则。 判断线性方程组是否有解,还可以看下面的定理。
在这里插入图片描述

A矩阵符合范德蒙行列式,所以当我们用克拉默法则的时候,需要算它的行列式的值很简单
在这里插入图片描述

第十题
在这里插入图片描述
正确答案:C
解题思路:
题目中说了向量组 α 1 , α 2 , α 3 \alpha_1,\alpha_2,\alpha_3 α1,α2,α3 α 1 , α 2 , α 4 \alpha_1,\alpha_2,\alpha_4 α1,α2,α4等价 (注: 等价意味着矩阵秩相同

解法一:
我们把 α 1 , α 2 , α 3 , α 4 \alpha_1,\alpha_2,\alpha_3,\alpha_4 α1,α2,α3,α4拼成一个矩阵如下:
① 当 λ ≠ 1 时 \lambda \neq1时 λ=1
{ λ 1 1 1 1 λ 1 λ 1 1 λ λ 2 } = ( 交 换 2 , 3 行 ) > { 1 1 λ λ 2 1 λ 1 λ λ 1 1 1 } \left\{ \begin{matrix} \lambda& 1 & 1& 1 \\ 1 & \lambda& 1 & \lambda\\ 1 & 1 & \lambda & \lambda^2 \end{matrix} \right\}=^{(交换2,3行)}> \left\{ \begin{matrix} 1 & 1 & \lambda & \lambda^2 \\ 1 & \lambda& 1 & \lambda\\ \lambda& 1 & 1& 1 \\ \end{matrix} \right\} λ111λ111λ1λλ2=(2,3)>11λ1λ1λ11λ2λ1
= ( r 2 − r 1 , r 3 − λ r 1 ) > { 1 1 λ λ 2 0 λ − 1 1 − λ λ − λ 2 0 1 − λ 1 − λ 2 1 − λ 3 } =^{(r_2-r_1,r_3-\lambda r_1)}> \left\{ \begin{matrix} 1 & 1 & \lambda & \lambda^2 \\ 0 & \lambda-1& 1-\lambda & \lambda-\lambda^2\\ 0 & 1-\lambda & 1-\lambda^2& 1-\lambda^3 \\ \end{matrix} \right\} =(r2r1,r3λr1)>1001λ11λλ1λ1λ2λ2λλ21λ3
= 第 2 行 缩 小 ( λ − 1 ) 倍 , 第 3 行 缩 小 ( 1 − λ ) 倍 > { 1 1 λ λ 2 0 1 − 1 − λ 0 1 1 + λ 1 + λ + λ 2 } =^{第2行缩小(\lambda-1)倍,第3行缩小(1-\lambda)倍}> \left\{ \begin{matrix} 1 & 1 & \lambda & \lambda^2 \\ 0 &1& -1&-\lambda\\ 0 & 1 & 1+\lambda& 1+\lambda+\lambda^2 \\ \end{matrix} \right\} =2(λ1)3(1λ)>100111λ11+λλ2λ1+λ+λ2
= r 2 − r 3 > { 1 1 λ λ 2 0 1 − 1 − λ 0 0 λ + 2 ( 1 + λ ) 2 } (5) =^{r_2-r_3}> \left\{ \begin{matrix} 1 & 1 & \lambda & \lambda^2 \\ 0 &1& -1&-\lambda\\ 0 & 0 & \lambda+2& (1+\lambda)^2 \\ \end{matrix} \right\} \tag{5} =r2r3>100110λ1λ+2λ2λ(1+λ)2(5)
矩阵(5)的第1,2,3,4列分别对应着 α 1 , α 2 , α 3 , α 4 \alpha_1,\alpha_2,\alpha_3,\alpha_4 α1,α2,α3,α4
我们发现第3行中的 λ + 2 \lambda+2 λ+2 ( 1 + λ ) 2 (1+\lambda)^2 (1+λ)2不可能同时为0,(注:如果要让 λ + 2 = 0 \lambda+2=0 λ+2=0,则 λ = − 2 \lambda=-2 λ=2,如果让 ( 1 + λ ) 2 = 0 (1+\lambda)^2=0 (1+λ)2=0,则 λ = − 1 \lambda=-1 λ=1) 所以当 λ ≠ − 1 , 且 λ ≠ − 2 \lambda\neq-1,且\lambda\neq-2 λ=1,λ=2时 , r ( α 1 , α 2 , α 3 ) = r ( α 1 , α 2 , α 4 ) = 3 r(\alpha_1,\alpha_2,\alpha_3)=r(\alpha_1,\alpha_2,\alpha_4)=3 r(α1,α2,α3)=r(α1,α2,α4)=3

②当 λ = 1 \lambda=1 λ=1时, α 1 , α 2 , α 3 , α 4 \alpha_1,\alpha_2,\alpha_3,\alpha_4 α1,α2,α3,α4这4个向量都一样,所以 r ( α 1 , α 2 , α 3 ) = r ( α 1 , α 2 , α 4 ) = 1 r(\alpha_1,\alpha_2,\alpha_3)=r(\alpha_1,\alpha_2,\alpha_4)=1 r(α1,α2,α3)=r(α1,α2,α4)=1也符合条件。

综上所述, λ ≠ − 1 , 且 λ ≠ − 2 \lambda\neq-1,且\lambda\neq-2 λ=1,λ=2就是本题的答案

填空题

在这里插入图片描述
答案: y = C 1 + e x ( C 2 c o s 2 x + C 3 s i n 2 x ) y=C_1+e^x(C_2 cos2x+C_3sin2x) y=C1+ex(C2cos2x+C3sin2x), C 1 , C 2 , C 3 C_1,C_2,C_3 C1,C2,C3是任意常数。
解题思路: 先把对应的特征方程写出来,特征方程是 λ 3 − 2 λ 2 + 5 λ = 0 \lambda^3-2\lambda^2+5\lambda=0 λ32λ2+5λ=0, 方程的解是 λ = 0 或 1 + 2 i 或 1 − 2 i \lambda=0或1+2i或1-2i λ=01+2i12i. 然后看下图二阶常系数微分方程的解, (三阶也是一样的套用这个公式)
在这里插入图片描述
对于 λ = 0 , 通 解 y = C 1 e 0 = C 1 \lambda=0, 通解y=C_1e^0=C_1 λ=0,y=C1e0=C1,
对于 λ = 1 + 2 i 或 1 − 2 i 时 , 通 解 y = e x ( C 2 c o s 2 x + C 3 s i n 2 x ) \lambda=1+2i或1-2i时, 通解y=e^x(C_2cos2x+C_3sin2x) λ=1+2i12iy=ex(C2cos2x+C3sin2x)
然后把两部分通解合并就是最后的答案了

大题

在这里插入图片描述解题思路:
题目让我们求 f ′ ( 1 ) f^\prime(1) f(1),而且题目给的那些条件,很明显让我们用导数定义式来解题
导数定义式里肯定需要用到 f ( 1 ) f(1) f(1),
lim ⁡ x → 0 f ( e x 2 ) − 3 f ( 1 + s i n 2 x ) x 2 = 2 \lim_{x\to0} \frac{f(e^{x^2})-3f(1+sin^2x)}{x^2}=2 limx0x2f(ex2)3f(1+sin2x)=2中,当 x → 0 x\to0 x0时,分母趋于0,分子是 − 2 f ( 1 ) -2f(1) 2f(1),而分子分母的比值是2,所以分子也趋于0。而 f ( 1 ) f(1) f(1)在x=1处连续,所以 f ( 1 ) = 0 f(1)=0 f(1)=0
然后我们可以把式子改写
lim ⁡ x → 0 f ( e x 2 ) − f ( 1 ) − [ 3 f ( 1 + s i n 2 x ) − 3 f ( 1 ) ] x 2 = 2 \lim_{x\to0} \frac{f(e^{x^2})-f(1)-[3f(1+sin^2x)-3f(1)]}{x^2}=2 limx0x2f(ex2)f(1)[3f(1+sin2x)3f(1)]=2
lim ⁡ x → 0 f ( e x 2 ) − f ( 1 ) x 2 − 3 f ( 1 + s i n 2 x ) − f ( 1 ) x 2 = 2 \lim_{x\to0} \frac{f(e^{x^2})-f(1)}{x^2}-3\frac{f(1+sin^2x)-f(1)}{x^2}=2 limx0x2f(ex2)f(1)3x2f(1+sin2x)f(1)=2
那怎么计算 lim ⁡ x → 0 f ( e x 2 ) − f ( 1 ) x 2 \lim_{x\to0} \frac{f(e^{x^2})-f(1)}{x^2} limx0x2f(ex2)f(1)呢?这就是本题的核心了
lim ⁡ x → 0 f ( e x 2 ) − f ( 1 ) x 2 = lim ⁡ x → 0 f ( e x 2 ) − f ( 1 ) e x 2 − 1 . e x 2 − 1 x 2 = \lim_{x\to0} \frac{f(e^{x^2})-f(1)}{x^2}=\lim_{x\to0} \frac{f(e^{x^2})-f(1)}{e^{x^2}-1}.\frac{e^{x^2}-1}{x^2}= limx0x2f(ex2)f(1)=limx0ex21f(ex2)f(1).x2ex21=
lim ⁡ x → 0 f ′ ( 1 ) . e x 2 − 1 x 2 = f ′ ( 1 ) \lim_{x\to0}f^\prime(1).\frac{e^{x^2}-1}{x^2}=f^\prime(1) limx0f(1).x2ex21=f(1)
然后 − 3 f ( 1 + s i n 2 x ) − f ( 1 ) x 2 = − 3 f ′ ( 1 ) -3\frac{f(1+sin^2x)-f(1)}{x^2}=-3f^\prime(1) 3x2f(1+sin2x)f(1)=3f(1)
所以整个式子就是 − 2 f ′ ( 1 ) = 2 -2f^\prime(1)=2 2f(1)=2,所以 f ′ ( 1 ) = − 1 f^\prime(1)=-1 f(1)=1


第18题
在这里插入图片描述
解题思路:
本题考察的点很常规,
①一阶非齐次线性微分方程的通解公式 ②弧长公式
对于 2 x y ′ − 4 y = 2 l n x − 1 2xy^\prime-4y=2lnx-1 2xy4y=2lnx1可以转换成 y ′ − 2 y x = 2 l n x − 1 2 x y^\prime-\frac{2y}{x}=\frac{2lnx-1}{2x} yx2y=2x2lnx1, 然后算出通解是
y = e − ∫ − 2 x d x ( ∫ 2 l n x − 1 2 x e ∫ − 2 x d x + C ) y=e^{-\int-\frac{2}{x}dx}(\int\frac{2lnx-1}{2x}e^{\int-\frac{2}{x}dx}+C) y=ex2dx(2x2lnx1ex2dx+C)
= x 2 ( ∫ 2 l n x − 1 2 x . − 1 x 2 d x + C ) =x^2(\int\frac{2lnx-1}{2x}.-\frac{1}{x^2}dx+C) =x2(2x2lnx1.x21dx+C)
= x 2 ( − ∫ 2 l n x 2 x 3 d x + ∫ 1 2 x 3 d x + C ) =x^2(-\int\frac{2lnx}{2x^3}dx+\int\frac{1}{2x^3}dx+C) =x2(2x32lnxdx+2x31dx+C)
对于 − ∫ l n x x 3 d x = − ∫ l n x d ( − 1 2 x − 2 ) = 1 2 x 2 l n x − ∫ 1 2 x 3 d x -\int\frac{lnx}{x^3}dx=-\int lnxd(-\frac{1}{2}x^{-2})=\frac{1}{2}x^2lnx-\int\frac{1}{2x^3}dx x3lnxdx=lnxd(21x2)=21x2lnx2x31dx
所以整个式子就很好算了,最后得到通解 y = C x 2 − l n x 2 y=Cx^2-\frac{lnx}{2} y=Cx22lnx
然后把 y ( 1 ) = 1 4 y(1)=\frac{1}{4} y(1)=41代入,计算出 C = 1 4 C=\frac{1}{4} C=41,所以
y = 1 4 x 2 − l n x 2 y=\frac{1}{4}x^2-\frac{lnx}{2} y=41x22lnx (注:我们顺便把 y ′ = 1 2 x − 1 2 x y^{\prime}=\frac{1}{2}x-\frac{1}{2x} y=21x2x1
然后开始算曲线弧长,弧长公式是 ∫ a b 1 + y ′ 2 d x \int_a^b\sqrt{1+{y^{\prime}}^2}dx ab1+y2 dx
本题的曲线弧长= ∫ 1 e 1 + ( 1 2 x − 1 2 x ) 2 d x = ∫ 1 e ( 1 2 x + 1 2 x ) 2 d x = ∫ 1 e ( 1 2 x + 1 2 x ) d x = 1 4 ( e 2 + 1 ) \int_1^e\sqrt{1+(\frac{1}{2}x-\frac{1}{2x})^2}dx=\int_1^e\sqrt{(\frac{1}{2}x+\frac{1}{2x})^2}dx=\int_1^e(\frac{1}{2}x+\frac{1}{2x})dx=\frac{1}{4}(e^2+1) 1e1+(21x2x1)2 dx=1e(21x+2x1)2 dx=1e(21x+2x1)dx=41(e2+1)


在这里插入图片描述
解题思路 先把积分区域画出来,如下图所示
在这里插入图片描述
然后我们发现积分函数中有 x 2 + y 2 x^2+y^2 x2+y2这样的式子,所以我们首先想到用极坐标来求解
在这里插入图片描述
在这里插入图片描述
解:
(1)题目让我们求 ∂ g ( x , y ) ∂ x \frac{\partial g(x,y)}{\partial x} xg(x,y),而 g ( x , y ) = f ( x , y − x ) g(x,y)=f(x,y-x) g(x,y)=f(x,yx),所以就相当于求 ∂ f ( x , y − x ) ∂ x \frac{\partial f(x,y-x)}{\partial x} xf(x,yx)
∂ f ( x , y − x ) ∂ x = f 1 ′ ( x , y − x ) − f 2 ′ ( x , y − x ) \frac{\partial f(x,y-x)}{\partial x}=f^\prime_1(x,y-x)-f^\prime_2(x,y-x) xf(x,yx)=f1(x,yx)f2(x,yx),这个时候我们刚好可以套用题目中给的条件 ∂ f ( u , v ) ∂ u − ∂ f ( u , v ) ∂ v = 2 ( u − v ) e − ( u + v ) ; \frac{\partial f(u,v)}{\partial u}-\frac{\partial f(u,v)}{\partial v}=2(u-v)e^{-(u+v)}; uf(u,v)vf(u,v)=2(uv)e(u+v); 然后就可以推导 f 1 ′ ( x , y − x ) − f 2 ′ ( x , y − x ) = 2 [ x − ( y − x ) ) ] e − [ x + ( y − x ) ] = 2 ( 2 x − y ) e − y ; f^\prime_1(x,y-x)-f^\prime_2(x,y-x)=2[x-(y-x))]e^{-[x+(y-x)]}=2(2x-y)e^{-y}; f1(x,yx)f2(x,yx)=2[x(yx))]e[x+(yx)]=2(2xy)ey;

(2)由 ∂ g ( x , y ) ∂ x = 2 ( 2 x − y ) e − y \frac{\partial g(x,y)}{\partial x}=2(2x-y)e^{-y} xg(x,y)=2(2xy)ey,可以得出 g ( x , y ) = 2 ( x 2 − x y ) e − y + C ( y ) g(x,y)=2(x^2-xy)e^{-y}+C(y) g(x,y)=2(x2xy)ey+C(y); 又因为第一问里的条件说了 g ( x , y ) = f ( x , y − x ) g(x,y)=f(x,y-x) g(x,y)=f(x,yx),所以 f ( x , y − x ) = g ( x , y ) = 2 ( x 2 − x y ) e − y + C ( y ) f(x,y-x)=g(x,y)=2(x^2-xy)e^{-y}+C(y) f(x,yx)=g(x,y)=2(x2xy)ey+C(y) 又因为题干中给的条件 f ( u , 0 ) = u 2 e − u f(u,0)=u^2e^{-u} f(u,0)=u2eu,所以我们得想办法用上这个条件。 令 y = x y=x y=x,则f(x,y-x)=f(x,0)。
所以 C ( x ) = x 2 e − x C(x)=x^2e^{-x} C(x)=x2ex, 所以 C ( y ) = y 2 e − y C(y)=y^2e^{-y} C(y)=y2ey所以 g ( x , y ) = 2 ( x 2 − x y ) e − y + y 2 e − y g(x,y)=2(x^2-xy)e^{-y}+y^2e^{-y} g(x,y)=2(x2xy)ey+y2ey;所以 f ( x , y − x ) = 2 ( x 2 − x y ) e − y + y 2 e − y f(x,y-x)=2(x^2-xy)e^{-y}+y^2e^{-y} f(x,yx)=2(x2xy)ey+y2ey ,而本题让我们求的是 f ( u , v ) f(u,v) f(u,v),所以我们不妨令 u = x , v = y − x u=x,v=y-x u=x,v=yx x = u , y = u + v x=u,y=u+v x=u,y=u+v;
所以 f ( u , v ) = 2 [ u 2 − u ( u + v ) ] e − ( u + v ) + ( u + v ) 2 e − ( u + v ) = − 2 u v e − ( u + v ) + ( u + v ) 2 e − ( u + v ) = ( u 2 + v 2 ) e − ( u + v ) f(u,v)=2[u^2-u(u+v)]e^{-(u+v)}+(u+v)^2e^{-(u+v)}=-2uve^{-(u+v)}+(u+v)^2e^{-(u+v)}=(u^2+v^2)e^{-(u+v)} f(u,v)=2[u2u(u+v)]e(u+v)+(u+v)2e(u+v)=2uve(u+v)+(u+v)2e(u+v)=(u2+v2)e(u+v);
知道了 f ( u , v ) = ( u 2 + v 2 ) e − ( u + v ) f(u,v)=(u^2+v^2)e^{-(u+v)} f(u,v)=(u2+v2)e(u+v),让我们求极值,我们就来算下驻点
{ ∂ f ( u , v ) ∂ u = 2 u e − ( u + v ) − ( u 2 + v 2 ) e − ( u + v ) = 0 , ∂ f ( u , v ) ∂ v = 2 v e − ( u + v ) − ( u 2 + v 2 ) e − ( u + v ) = 0 , \begin{cases} \frac{\partial f(u,v)}{\partial u}=2ue^{-(u+v)}-(u^2+v^2)e^{-(u+v)}=0,\\ \frac{\partial f(u,v)}{\partial v}=2ve^{-(u+v)}-(u^2+v^2)e^{-(u+v)}=0, \end{cases} {uf(u,v)=2ue(u+v)(u2+v2)e(u+v)=0,vf(u,v)=2ve(u+v)(u2+v2)e(u+v)=0,
解得 { u = 0 , v = 0 \begin{cases} u=0,\\ v=0 \end{cases} {u=0,v=0或者 { u = 1 , v = 1 \begin{cases} u=1,\\ v=1 \end{cases} {u=1,v=1
∂ 2 f ∂ u 2 = ( 2 − 2 u ) e − ( u + v ) − ( 2 u − u 2 − v 2 ) e − ( u + v ) , \frac{\partial ^2 f}{\partial u^2}=(2-2u)e^{-(u+v)}-(2u-u^2-v^2)e^{-(u+v)}, u22f=(22u)e(u+v)(2uu2v2)e(u+v),
∂ 2 f ∂ v 2 = ( 2 − 2 v ) e − ( u + v ) − ( 2 v − u 2 − v 2 ) e − ( u + v ) , \frac{\partial ^2 f}{\partial v^2}=(2-2v)e^{-(u+v)}-(2v-u^2-v^2)e^{-(u+v)}, v22f=(22v)e(u+v)(2vu2v2)e(u+v),
∂ 2 f ∂ u ∂ v = − 2 v e − ( u + v ) − ( 2 u − u 2 − v 2 ) e − ( u + v ) , \frac{\partial ^2 f}{\partial u \partial v}=-2ve^{-(u+v)}-(2u-u^2-v^2)e^{-(u+v)}, uv2f=2ve(u+v)(2uu2v2)e(u+v),
{ u = 0 , v = 0 \begin{cases} u=0,\\ v=0 \end{cases} {u=0,v=0 时, A = 2 , C = 2 , B = 0 , A C − B 2 > 0 A=2,C=2,B=0, AC-B^2>0 A=2C=2B=0,ACB2>0,且A>0,所以有极小值 f ( 0 , 0 ) = 0 f(0,0)=0 f(0,0)=0
{ u = 1 , v = 1 \begin{cases} u=1,\\ v=1 \end{cases} {u=1,v=1时, A = 2 , C = 0 , B = − 2 e − 2 , A C − B 2 < 0 A=2,C=0,B=-2e^{-2},AC-B^2<0 A=2,C=0,B=2e2,ACB2<0,所以 f ( 1 , 1 ) f(1,1) f(1,1)不是极值。

下面我们回顾下多元函数求极值的知识点如下:
在这里插入图片描述

在这里插入图片描述

思路分析:

看到要证明积分不等式的问题,首先想到构造函数,那构造什么样的函数呢?题目要证明什么,我们就构造什么,本题我们就可以构造 F ( x ) = ( x − a ) f ( a + x 2 ) − ∫ a x f ( t ) d t F(x)=(x-a)f(\frac{a+x}{2})-\int_{a}^{x}f(t)dt F(x)=(xa)f(2a+x)axf(t)dt

证明:

必要性: F ( x ) = ( x − a ) f ( a + x 2 ) − ∫ a x f ( t ) d t F(x)=(x-a)f(\frac{a+x}{2})-\int_{a}^{x}f(t)dt F(x)=(xa)f(2a+x)axf(t)dt ,很明显F(a)=0,
F ′ ( x ) = f ( a + x 2 ) + 1 2 ( x − a ) f ′ ( a + x 2 ) − f ( x ) F^{\prime}(x)=f(\frac{a+x}{2})+\frac{1}{2}(x-a)f^{\prime}(\frac{a+x}{2})-f(x) F(x)=f(2a+x)+21(xa)f(2a+x)f(x)
= 1 2 ( x − a ) f ˊ ( a + x 2 ) − [ f ( x ) − f ( a + x 2 ) ] =\frac{1}{2}(x-a)\acute{f}(\frac{a+x}{2})-[f(x)-f(\frac{a+x}{2})] =21(xa)fˊ(2a+x)[f(x)f(2a+x)] = 1 2 ( x − a ) f ′ ( a + x 2 ) − 1 2 ( x − a ) f ( ξ ) ˊ =\frac{1}{2}(x-a)f^{\prime}(\frac{a+x}{2})-\frac{1}{2}(x-a)\acute{f(\xi)} =21(xa)f(2a+x)21(xa)f(ξ)ˊ, ξ ∈ ( a + x 2 , x ) \xi\in(\frac{a+x}{2},x) ξ(2a+x,x) = 1 2 ( x − a ) [ f ˊ ( a + x 2 ) − f ′ ( ξ ) ) ] =\frac{1}{2}(x-a)[\acute{f}(\frac{a+x}{2})-f^{\prime}(\xi))] =21(xa)[fˊ(2a+x)f(ξ))]
因为 f ′ ′ ( x ) > 0 , f ′ ( a + x 2 ) − f ′ ( ξ ) < 0 f^{\prime{\prime}}(x)>0,f^{\prime}(\frac{a+x}{2})-f^{\prime}(\xi)<0 f(x)>0,f(2a+x)f(ξ)<0,故而 F ′ ( x ) < 0 F^{\prime}(x)<0 F(x)<0, 所以 F ( b ) ≤ F ( a ) = 0 F(b) \leq F(a)=0 F(b)F(a)=0,所以 F ( b ) = ( b − a ) f ( a + b 2 ) − ∫ a b f ( t ) d t ≤ 0 , 即 f ( a + b 2 ) < 1 b − a ∫ a b f ( t ) d t F(b)=(b-a)f(\frac{a+b}{2})-\int_{a}^{b}f(t)dt \leq 0,即f(\frac{a+b}{2})<\frac{1}{b-a}\int_{a}^{b}f(t)dt F(b)=(ba)f(2a+b)abf(t)dt0,f(2a+b)<ba1abf(t)dt

充分性:
∀ x 0 ∈ ( − ∞ , + ∞ ) \forall x_0\in(-\infty,+\infty) x0(,+),取 a = x 0 − h , b = x 0 + h a=x_0-h,b=x_0+h a=x0h,b=x0+h,其中 h > 0 h>0 h>0,那我们的式子 f ( a + b 2 ) ≤ 1 b − a ∫ a b f ( t ) d t f(\frac{a+b}{2})\leq\frac{1}{b-a}\int_{a}^{b}f(t)dt f(2a+b)ba1abf(t)dt就可以转化成 f ( x 0 ) ≤ 1 2 h ∫ x 0 − h x 0 + h f ( x ) d x ⇔ ∫ x 0 − h x 0 + h f ( x ) d x − 2 h f ( x 0 ) 2 h ≥ 0 f(x_0)\leq\frac{1}{2h} \int_{x_0-h}^{x_0+h}f(x)dx \Leftrightarrow \frac{\int_{x_0-h}^{x_0+h}f(x)dx-2hf(x_0)}{2h}\geq0 f(x0)2h1x0hx0+hf(x)dx2hx0hx0+hf(x)dx2hf(x0)0,

为了证明题目中的 f ′ ′ ( x ) ≥ 0 , f^{\prime\prime}(x)\geq 0, f(x)0,我们只能想到2种办法
①从导数的定义式上入手,想办法构造导数的定义式
②利用泰勒公式(因为泰勒公式里面还有一阶导和二阶导)
③洛必达法则(不停地分子分母洛下去,必定能出现高阶导数)

对于本题而言,我们已经引入了邻域 ( x 0 − h , x 0 + h ) (x_0-h,x_0+h) (x0h,x0+h),因为要证明 f ′ ′ ( x ) f^{\prime\prime}(x) f(x),所以我们不妨假设a和b隔得非常非常近,即 lim ⁡ h → 0 \lim_{h\to 0} limh0,对于这种求极限的情况,我们首先想到洛必达法则,故而对于式子 ∫ x 0 − h x 0 + h f ( x ) d x − 2 h f ( x 0 ) 2 h ≥ 0 \frac{\int_{x_0-h}^{x_0+h}f(x)dx-2hf(x_0)}{2h}\geq0 2hx0hx0+hf(x)dx2hf(x0)0,我们可以想办法用洛必达法则解决,对于分子而言,必须要进行3次求导才能出现 f ′ ′ ( x ) f^{\prime\prime}(x) f(x)二阶导,而分母却经不起3次求导,那怎么办呢,我们把分母的次幂加大到3阶 ∫ x 0 − h x 0 + h f ( x ) d x − 2 h f ( x 0 ) 2 h 3 ≥ 0 \frac{\int_{x_0-h}^{x_0+h}f(x)dx-2hf(x_0)}{2h^3}\geq0 2h3x0hx0+hf(x)dx2hf(x0)0,然后上下求导
lim ⁡ h → 0 ∫ x 0 − h x 0 + h f ( x ) d x − 2 h f ( x 0 ) 2 h 3 \lim_{h\to0}\frac{\int_{x_0-h}^{x_0+h}f(x)dx-2hf(x_0)}{2h^3} limh02h3x0hx0+hf(x)dx2hf(x0)
= lim ⁡ h → 0 f ( x 0 + h ) − f ( x 0 − h ) − 2 f ( x 0 ) 6 h 2 =\lim_{h\to0}\frac{f(x_0+h)-f(x_0-h)-2f(x_0)}{6h^2} =h0lim6h2f(x0+h)f(x0h)2f(x0) = lim ⁡ h → 0 f ′ ( x 0 + h ) + f ′ ( x 0 − h ) 12 h =\lim_{h\to0} \frac{f^{\prime}(x_0+h)+f^{\prime}(x_0-h)}{12h} =h0lim12hf(x0+h)+f(x0h) = lim ⁡ h → 0 f ′ ′ ( x 0 + h ) − f ′ ′ ( x 0 − h ) 12 =\lim_{h\to0}\frac{f^{\prime\prime}(x_0+h)-f^{\prime\prime}(x_0-h)}{12} =h0lim12f(x0+h)f(x0h)
h → 0 h\to0 h0时,分子就是 f ′ ′ ( x 0 ) + f ′ ′ ( x 0 ) = 2 f ′ ′ ( x 0 ) f^{\prime\prime}(x_0)+f^{\prime\prime}(x_0)=2f^{\prime\prime}(x_0) f(x0)+f(x0)=2f(x0)
所以 = lim ⁡ h → 0 f ′ ′ ( x 0 + h ) + f ′ ′ ( x 0 − h ) 12 = f ′ ′ ( x 0 ) 6 =\lim_{h\to0} \frac{f^{\prime\prime}(x_0+h)+f^{\prime\prime}(x_0-h)}{12}=\frac{f^{\prime\prime}(x_0)}{6} =h0lim12f(x0+h)+f(x0h)=6f(x0)
所以 f ′ ′ ( x 0 ) 6 ≥ 0 \frac{f^{\prime\prime}(x_0)}{6}\geq0 6f(x0)0,由极限保号性, f ′ ′ ( x 0 ) ≥ 0 f^{\prime\prime}(x_0)\geq0 f(x0)0. 本题得证

在这里插入图片描述
解:(1) 第一问出的很常规,无非就是让你求矩阵的特征值,然后计算对应特征值的特征向量,然后把特征向量单位化,正交化就完事了
在这里插入图片描述
(2)通常来说,第二问一般会用到第一问的结论
所以 min ⁡ x → 0 f ( x 1 , x 2 , x 3 ) x T x = 4 y 1 2 + 4 y 2 2 + 2 y 3 2 y 1 2 + y 2 2 + y 3 2 = 2 + 2 y 1 2 + 2 y 2 2 y 1 2 + y 2 2 + y 3 2 \min_{x\to0} \frac{f(x_1,x_2,x_3)}{x^Tx}=\frac{4y_1^2+4y_2^2+2y_3^2}{y_1^2+y_2^2+y_3^2}=2+\frac{2y_1^2+2y_2^2}{y_1^2+y_2^2+y_3^2} minx0xTxf(x1,x2,x3)=y12+y22+y324y12+4y22+2y32=2+y12+y22+y322y12+2y22 ,当 y 1 = y 2 = 0 y_1=y_2=0 y1=y2=0时,取最小值是2。
回答完毕。

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Java全栈研发大联盟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值