高数
Java全栈研发大联盟
好记性不如烂笔头,好好学
展开
-
常用麦克劳林展开式
原创 2022-05-25 16:32:44 · 3490 阅读 · 0 评论 -
无界函数的极限审敛法
结论证明limx→a+(x−a)pf(x)=A可写成limx→a+f(x)(x−a)p=A\lim_{x\to a^+} (x-a)^pf(x)=A可写成\lim_{x\to a^+}\frac{f(x)}{(x-a)^p}=Ax→a+lim(x−a)pf(x)=A可写成x→a+lim(x−a)pf(x)=A然后看下图 因为红线在黑线的上方,所以红线与xOy轴围成的面积更大。 如果黑线代表的函数是发散的,那红线必然发散; 如果红线代表的函数是收敛的,那黑线必然收敛对于∫ab(x−a.原创 2022-05-14 13:34:02 · 1984 阅读 · 0 评论 -
高数复习笔记(同济 第七版 上下册)
本文转载自:https://blog.csdn.net/qq_40581789/article/details/84394550转载 2019-10-21 16:48:08 · 75312 阅读 · 22 评论 -
高数——复合函数链式求导
链式法则是微积分中的求导法则,用以求一个复合函数的导数。所谓的复合函数,是指以一个函数作为另一个函数的自变量。如设f(x)=3x,g(x)=x+3,g(f(x))就是一个复合函数,并且g′(f(x))=3链式法则,若h(x)=f(g(x)),则h’(x)=f’(g(x))g’(x)链式法则用文字描述,就是“由两个函数凑起来的复合函数,其导数等于里边函数代入外边函数的值之导数,乘以里边函数的导...转载 2019-10-21 12:39:32 · 7217 阅读 · 0 评论 -
高数——全微分
对于一元函数,在一点可微的几何意义就是函数在这点有切线;而对于二元函数,在一点可微的几何意义就是函数在这点处有切平面,那么啥是切平面呢?这个我们在后面会讲到,你们可以先根据切线的概念扩展脑补一下。本文转载自:https://www.jianshu.com/p/75e24c978299...转载 2019-10-21 11:35:31 · 2011 阅读 · 0 评论 -
高数——偏导数
偏导数在一元函数中,导数就是函数的变化率。对于二元函数研究它的“变化率”,由于自变量多了一个,情况就要复杂的多。在 xOy 平面内,当动点由 P(x0,y0) 沿不同方向变化时,函数 f(x,y) 的变化快慢一般说来是不同的,因此就需要研究 f(x,y) 在 (x0,y0) 点处沿不同方向的变化率。在这里我们只学习函数 f(x,y) 沿着平行于 x 轴和平行于 y 轴两个特殊方位变动时, f...转载 2019-10-21 11:24:04 · 63440 阅读 · 6 评论 -
高数——多元函数的定义及极限
之前我们学习的导数、微分和积分都是针对一元函数的,也就是函数只依赖一个变量,但是在我们今后遇到的实际问题中,更多出现的却是要考虑多个变量的情况,这是我们就要用多元函数来表示它们之间的关系了。比如地球表面上一点的温度 T 同时依赖于纬度 x 和经度 y,可以用一个二元函数 T=f(x,y) 来表示。和一元函数一样,二元函数也是有定义域和值域的,一元函数的定义域是 轴上一个“线段”上的点的集合,而...转载 2019-10-21 10:58:20 · 7080 阅读 · 1 评论 -
高数——定积分计算大法之换元法
定积分的换元法,计算方法与不定积分类似,但是因为定积分是有积分限的,积分变量变化以后积分限也是要相应改变的,所以大家一定要记住:换元必换限,不换元则不换限!使用换元法,要记住“三换”原则:�换积分限;�换被积函数;�换积分变量。本文转载自https://www.jianshu.com/p/90802e2d19de...转载 2019-10-21 10:49:50 · 9412 阅读 · 0 评论 -
高数——积分上限函数
本文转载自;https://www.jianshu.com/p/45e0c2b98aad转载 2019-10-21 10:44:48 · 2997 阅读 · 0 评论 -
高数——分部积分法
这里指数函数和三角函数可以交换顺序。但是要注意:题目如果要用到多次分部积分法,那么你开始选择了哪个函数和dx凑就要专一的一直用这个函数去凑!本文转载自:https://www.jianshu.com/p/bfdb48fe1984...转载 2019-10-21 10:33:54 · 3470 阅读 · 0 评论 -
高数——换元法(2)
通俗一点 第一类换元法 就是把积分式子里的某一项塞到d()里面去 进而积分第二类换元法 是设x=ψ(t) 然后把dx换成dt 第二类积分最常见的就是三角换元 很多关于x的多次分式都依靠这个解决记住公式,很重要用完换元法后居然不给人家换回来,记住,最后的结果是一定是关于 x 的,而不是关于 t 的!本文转载自:https://www.jianshu.com/p/a42b20f0...转载 2019-10-21 10:15:27 · 4697 阅读 · 0 评论 -
高数——换元法
(1)根式代换:被积函数中带有根式√(ax+b),可直接令 t =√(ax+b);(2)三角代换:利用三角函数代换,变根式积分为有理函数积分,有三种类型:被积函数含根式√(a^2 + x^2),令 x = asint被积函数含根式√(a^2 +x^2),令 x = atant 这样的话就可以得到asec^2 x被积函数含根式√(x^2 -a^2),令 x = asect注:记住三角形...转载 2019-10-21 09:25:11 · 4678 阅读 · 0 评论 -
高数——不定积分与定积分
不定积分存在的实际意义不定积分计算的是原函数(得出的结果是一个式子)。定积分计算的是具体的数值(得出的借给是一个具体的数字) 不定积分是微分的逆运算, 而定积分是建立在不定积分的基础上把值代进去相减。本文转载自:https://www.jianshu.com/p/51f30d5607af...转载 2019-10-18 17:48:54 · 1535 阅读 · 0 评论 -
高数——洛必达法则的易错点与综合应用
上面的做法是正确的做法,接下来示范一下错误的做法辨析:很多同学都容易犯这样一个错误,上来就想用等价无穷小代换做:(说明:要知道tan(3π/2)可不是趋于0,而是趋于负无穷大)这必然是不对的,大家都容易只记方法,不计前提,使用等价无穷小代换,前提必须这得是无穷小才能代换啊,lim下面的字小你也不能把人家忽略不看啊!上面的做法是正确的接下来我示范一个错误的做法辨析:这个题很多同学一上...转载 2019-10-18 17:32:01 · 3229 阅读 · 0 评论 -
高数——洛必达法则
洛必达法则洛必达法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。应用条件:在运用洛必达法则之前,首先要完成两项任务:一是分子分母的极限是否都等于零(或者无穷大);二是分子分母在限定的区域内是否分别可导。如果这两个条件都满足,接着求导并判断求导之后的极限是否存在:如果存在,直接得到答案;如果不存在,则说明此种未定式不可用洛必达法则来解决;如果不确定,即结果仍然为未定式,...转载 2019-10-18 17:12:13 · 7434 阅读 · 0 评论 -
高数——单调有界定理
单调有界定理若数列{an}递增有上界(递减有下界),则数列{an}收敛,即单调有界数列必有极限。具体来说,如果一个数列单调递增且有上界,或单调递减且有下界,则该数列收敛。根据数列有界的定义可知,如果一个数列有界,那么它一定有上界和下界。反过来,如果一个数列只有上界或只有下界,则不能得出数列有界的结论。定理单调有界数列必有极限。本文转载自:https://www.jianshu.com/p...转载 2019-10-18 16:42:45 · 11797 阅读 · 0 评论 -
高数——含有有理根式的函数极限
对于含有有理根式的函数极限,通常采用分子分母有理化的方法来处理。若分母为两个无理数相减(加) 则分子分母同时乘以分母中的两个无理数的和(差) 那么分母就变成了有理数 这叫分母有理化同样分子有理化也是类似的。极限和原本的数一般不想相减的本文转载自:https://www.jianshu.com/p/1cadf070b13f...转载 2019-10-18 16:40:00 · 2042 阅读 · 0 评论 -
高数——微分中值定理之拉格朗日与柯西
拉格朗日中值定理拉格朗日中值定理又称拉氏定理,是微分学中的基本定理之一,它反映了可导函数在闭区间上的整体的平均变化率与区间内某点的局部变化率的关系。拉格朗日中值定理是罗尔中值定理的推广,同时也是柯西中值定理的特殊情形,是泰勒公式的弱形式(一阶展开)。法国数学家拉格朗日于1778年在其着作《解析函数论》的第六章提出了该定理,并进行了初步证明,因此人们将该定理命名为拉格朗日中值定理。指的是区间(a...转载 2019-10-18 16:15:33 · 5168 阅读 · 0 评论 -
高数——微分中值定理之罗尔定理
罗尔中值定理罗尔中值定理是微分学中一条重要的定理,是三大微分中值定理之一,描述如下: 如果函数f(x)满足以下条件:(1)在闭区间[a,b]上连续(2)在(a,b)内可导(3)f(a)=f(b),则至少存在一个ξ∈(a,b),使得f’(ξ)=0罗尔中值定理的几何意义若连续曲线y=f(x)在区间[a,b]上所对应的弧段AB,除端点外处处具有不垂直于x轴的切线,且在弧的两个端点A,B处的纵...转载 2019-10-18 14:51:46 · 2630 阅读 · 1 评论 -
高数——微分
微分,是在解决直与曲的矛盾中产生的,微分是微积分学中除了导数之外的另一个基本概念。在数学中,微分是对函数的局部变化率的一种线性描述。微分可以近似地描述当函数自变量的取值作足够小的改变时,函数的值是怎样改变的。比如,x的变化量x趋于无穷小时,则记作微元dx。微分具有双重意义:它表示一个微小的量,同时又表示一种与求导密切相关的运算。微分是微分学转向积分学的一个关键概念。微分的思想就是一个线性近...转载 2019-10-18 14:34:00 · 1306 阅读 · 0 评论 -
高数——隐函数与参数方程求导
隐函数如果方程f(x,y)=0能确定y是x的函数,那么称这种方式表示的函数是隐函数。而函数就是指:在某一变化过程中,两个变量x、y,对于某一范围内的x的每一个值,y都有确定的值和它对应,y就是x的函数。这种关系一般用y=f(x)即显函数来表示。f(x,y)=0即隐函数是相对于显函数来说的。其实隐函数的知识并不难理解,我们以前学的因变量y在函数一边的叫做显函数;隐函数就是将y“隐藏”在一个式子里...转载 2019-10-18 14:19:01 · 6506 阅读 · 3 评论 -
高数——高阶导数
高阶导数的用处高阶导数非常有用,二阶导可以判断函数图像的凹凸性;泰勒级数公式是用系数含有n阶导的x的幂次方表示的,而泰勒级数的作用非常强大,它可以把非常复杂的函数变成容易研究的幂函数。高阶导数什么是高阶导数呢?就是我求完一次导数之后,我再求一遍导数的导数,以此类推,我求了几遍它就叫几阶导数。具体用符号怎么写,我先举几个例子之后再讲。举个例子(下面的几个例子我都只求到二阶):它的导数就是y...转载 2019-10-18 11:17:14 · 3247 阅读 · 0 评论 -
高数——导数的计算
例题本文转载自:https://www.jianshu.com/p/bbcf1d7e98d8转载 2019-10-18 09:50:43 · 1009 阅读 · 0 评论 -
高数——导数的意义
导数(Derivative)是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f’(x0)或df(x0)/dx。导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表...转载 2019-10-18 09:35:24 · 2415 阅读 · 0 评论 -
怎样记住“和差化积 & 积化和差”公式?
和差化积&积化和差,这两组三角公式因为用的比较少,形式也较为复杂,一直不太熟悉,所以今天希望用中学阶段熟悉的三角展开公式来推导,帮助记忆理解。为推导和差化积,将变量x、y都改写,如(1)式所示:推导和差化积:从两项三角函数之和出发,将改写好的变量带入后三角展开,可以看到有一项乘积能被抵消掉,便可完成推导,如(2)式所示:PS:和差化积仅适用于同名三角函数相加相减(共四组:s...转载 2019-10-17 17:42:49 · 2457 阅读 · 0 评论 -
高数——零点定理、介值定理的应用
零点定理设函数f(x)在闭区间[a,b]上连续,且f(a)与 f(b)异号(即f(a)× f(b)<0),那么在开区间(a,b)内至少有函数f(x)的一个零点,即至少有一点ξ(a<ξ<b)使f(ξ)=0。(至少存在一个点,其值是0)介值定理又名中间值定理,是闭区间上连续函数的性质之一,闭区间连续函数的重要性质之一。在数学分析中,介值定理表明,如果定义域为[a,b]的连续函数...转载 2019-10-17 17:09:23 · 4841 阅读 · 0 评论 -
高数——两个重要极限
(提示说明:其实下面的这些例题都可以直接使用“等价无穷小“”来做)凑成第一个特别重要极限的形式,之后再做处理。把用正弦的格式来代替正切把反三角函数转换成三角函数在做极限题,余弦一般看看是不是一个有界函数。凑成第二个重要极限形式,之后再做处理极限函数是分数形式,且分子与分母很相似,处理成(1+□)的形式,未知数趋向于无穷小或无穷大。待求极限函数有指数的时候,可以往...转载 2019-10-17 17:00:54 · 153814 阅读 · 14 评论 -
高数——连续函数运算
定理一在某点连续的有限个函数经有限次和,积,商(分母不为 0) 运算,结果仍是一个在该点连续的函数。定理二连续单调递增 (递减)函数的反函数,也连续单调递增 (递减)。定理三连续函数的复合函数是连续的。复合函数里有指数函数的,可以包含对数函数的指数函数来求。本文转载自:https://www.jianshu.com/p/6453fc1a9e52...转载 2019-10-17 16:53:00 · 1554 阅读 · 0 评论 -
高数——间断点
间断点是指在非连续函数y=f(x)中某点处xo处有中断现象,那么,xo就称为函数的不连续点(或间断点)。设一元实函数f(x)在点x0的某去心邻域内有定义。如果函数f(x)有下列情形之一:(1)在x=x0没有定义;(2)虽在x=x0有定义,但x→x0,limf(x)不存在;(3)虽在x=x0有定义,且x→x0,limf(x)存在,但x→x0,limf(x)≠f(x0),(不相等)则函数...转载 2019-10-17 16:36:35 · 6834 阅读 · 0 评论 -
高数——函数的连续性
脑洞大开:把分开的地方都给连起来了本文转载自:https://www.jianshu.com/p/5e449b23b5c2转载 2019-10-17 16:08:19 · 919 阅读 · 0 评论 -
高数——无穷小的比较与等价无穷小
注意:我们比较的必须都是无穷小量,别看这句话是废话,很多时候大家都会忘记最基本最简单的前提!这里的x不一定是x,也可以是其他函数,可以用三角来代替。本文转载自:https://www.jianshu.com/p/5d840637effd...转载 2019-10-17 16:00:31 · 2683 阅读 · 0 评论 -
高数——夹逼定理
简单的说:函数A>B,函数B>C,函数A的极限是X,函数C的极限也是X ,那么函数B的极限就一定是X,这个就是夹逼定理。夹逼准则适用于求解无法直接用极限运算法则求极限的函数极限,间接通过求得F(x)和G(x)的极限来确定接下来看例二之前,先看下面的一个讲解本文转载自:https://www.jianshu.com/p/6c6328df052c...转载 2019-10-17 15:34:08 · 47716 阅读 · 4 评论 -
高数——函数的极限
如果对于任意给定的ε>0,存在正数X,使得对于适合不等式x>X的一切x,所对应的函数值f(x)都满足不等式│f(x)-A│<ε ,则称数A为函数f(x)当x→+∞时的极限,记作 f(x)→A(x→+∞).本文转载自;https://www.jianshu.com/p/1a9c9e4b7d59...转载 2019-10-17 15:08:38 · 867 阅读 · 0 评论 -
高中数学知识复习
一、常见函数二、三角函数的诱导公式三、部分公式复习四、反三角函数本文转载自:https://www.jianshu.com/p/2fd8449aad6f转载 2019-10-17 14:42:31 · 710 阅读 · 0 评论 -
高等数学公式总结
常用的等价无穷小关系如下:转载 2019-10-14 15:27:30 · 1268 阅读 · 0 评论