一、选择题
6、设函数f(u,v) 可微且
f
(
x
+
1
,
e
x
)
=
x
(
x
+
1
)
,
f
(
x
,
x
2
)
=
2
x
2
I
n
x
f(x+1,e^x)=x(x+1),f(x,x^2)=2x^2Inx
f(x+1,ex)=x(x+1),f(x,x2)=2x2Inx .则
d
f
(
1
,
1
)
=
df(1,1)=
df(1,1)=
(A) dx+dy
(B) dx-dy
(C ) dy
(D) -dy
答案: C
分析:题目要我们求的是
d
f
(
1
,
1
)
df(1,1)
df(1,1),那我们就只需要求出
f
1
′
(
1
,
1
)
f^\prime_1(1,1)
f1′(1,1)和
f
2
′
(
1
,
1
)
f^\prime_2(1,1)
f2′(1,1)即可
7、设函数f(x)在区间[0,1]上连续,则
∫
0
1
f
(
x
)
d
x
\int_0^1f(x)dx
∫01f(x)dx=
解析: 这道题很显然是考察积分的定义式,而积分的区间是0到1 ,那就把这个区间分成n份,那么
x
k
=
k
n
,
x
k
−
1
=
k
−
1
n
x_k=\frac{k}{n},x_{k-1}=\frac{k-1}{n}
xk=nk,xk−1=nk−1,但是ABCD四个选项里的f()括号里面似乎找不到
k
n
,
k
−
1
n
\frac{k}{n},\frac{k-1}{n}
nk,nk−1,但是我们可以发现
x
k
和
x
k
−
1
x_k和x_{k-1}
xk和xk−1的中间点是
(
k
n
+
k
−
1
n
)
2
=
2
k
−
1
2
n
\frac{(\frac{k}{n}+\frac{k-1}{n})}{2}=\frac{2k-1}{2n}
2(nk+nk−1)=2n2k−1,刚好就在选项B中找到了,选B
10、
答:C
大题
解析:区域D给了我们一个等式,我们发现里面含有
x
2
+
y
2
x^2+y^2
x2+y2这样的式子,于是我们首先想到利用三角代换
x
=
r
c
o
s
θ
,
y
=
r
s
i
n
θ
x=rcos\theta,y=rsin\theta
x=rcosθ,y=rsinθ,然后题目中说了x
≥
\geq
≥ 0 ,y
≥
\geq
≥ 0,所以
θ
\theta
θ
∈
\in
∈ [0,
π
2
\frac{π}{2}
2π].
等式就可以转换成
r
4
=
r
2
c
o
s
2
θ
−
r
2
s
i
n
2
θ
r^4=r^2cos^2\theta-r^2sin^2\theta
r4=r2cos2θ−r2sin2θ
r
2
=
c
o
s
2
θ
−
s
i
n
2
θ
=
c
o
s
2
θ
r^2=cos^2\theta-sin^2\theta=cos2\theta
r2=cos2θ−sin2θ=cos2θ, 又因为
r
2
≥
0
r^2\geq0
r2≥0,所以
c
o
s
2
θ
>
0
cos2\theta>0
cos2θ>0,所以
θ
∈
[
0
,
π
2
]
\theta\in[0,\frac{π}{2} ]
θ∈[0,2π],所以本题就好解决了