2021数二真题(只讲重点难度大点的题)

一、选择题

6、设函数f(u,v) 可微且 f ( x + 1 , e x ) = x ( x + 1 ) , f ( x , x 2 ) = 2 x 2 I n x f(x+1,e^x)=x(x+1),f(x,x^2)=2x^2Inx f(x+1,ex)=x(x+1),f(x,x2)=2x2Inx .则 d f ( 1 , 1 ) = df(1,1)= df(1,1)=
(A) dx+dy
(B) dx-dy
(C ) dy
(D) -dy
答案: C
分析:题目要我们求的是 d f ( 1 , 1 ) df(1,1) df(1,1),那我们就只需要求出 f 1 ′ ( 1 , 1 ) f^\prime_1(1,1) f1(1,1) f 2 ′ ( 1 , 1 ) f^\prime_2(1,1) f2(1,1)即可
在这里插入图片描述

7、设函数f(x)在区间[0,1]上连续,则 ∫ 0 1 f ( x ) d x \int_0^1f(x)dx 01f(x)dx=
在这里插入图片描述

解析: 这道题很显然是考察积分的定义式,而积分的区间是0到1 ,那就把这个区间分成n份,那么 x k = k n , x k − 1 = k − 1 n x_k=\frac{k}{n},x_{k-1}=\frac{k-1}{n} xk=nk,xk1=nk1,但是ABCD四个选项里的f()括号里面似乎找不到 k n , k − 1 n \frac{k}{n},\frac{k-1}{n} nk,nk1,但是我们可以发现 x k 和 x k − 1 x_k和x_{k-1} xkxk1的中间点是
( k n + k − 1 n ) 2 = 2 k − 1 2 n \frac{(\frac{k}{n}+\frac{k-1}{n})}{2}=\frac{2k-1}{2n} 2(nk+nk1)=2n2k1,刚好就在选项B中找到了,选B

10、在这里插入图片描述
答:C
在这里插入图片描述
在这里插入图片描述

大题

在这里插入图片描述
解析:区域D给了我们一个等式,我们发现里面含有 x 2 + y 2 x^2+y^2 x2+y2这样的式子,于是我们首先想到利用三角代换
x = r c o s θ , y = r s i n θ x=rcos\theta,y=rsin\theta x=rcosθ,y=rsinθ,然后题目中说了x ≥ \geq 0 ,y ≥ \geq 0,所以 θ \theta θ ∈ \in [0, π 2 \frac{π}{2} 2π].
等式就可以转换成 r 4 = r 2 c o s 2 θ − r 2 s i n 2 θ r^4=r^2cos^2\theta-r^2sin^2\theta r4=r2cos2θr2sin2θ
r 2 = c o s 2 θ − s i n 2 θ = c o s 2 θ r^2=cos^2\theta-sin^2\theta=cos2\theta r2=cos2θsin2θ=cos2θ, 又因为 r 2 ≥ 0 r^2\geq0 r20,所以 c o s 2 θ > 0 cos2\theta>0 cos2θ>0,所以 θ ∈ [ 0 , π 2 ] \theta\in[0,\frac{π}{2} ] θ[0,2π],所以本题就好解决了
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Java全栈研发大联盟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值