数二中一些常用结论

本文探讨了高等数学中的不等式性质,证明了当x大于0时,x大于自然对数(1+x)。同时,介绍了积分计算中关于瑕点收敛性的条件,指出当指数小于1时积分收敛,否则发散。在线性代数部分,阐述了矩阵特征值与矩阵等价、相似及合同关系之间的联系,强调了特征值相同并不意味着矩阵可以相似对角化,还需考虑特征向量的数量。最后,提到了合同矩阵的正负惯性指数特性。
摘要由CSDN通过智能技术生成

高数

1、当x>0时, x > l n ( 1 + x ) x>ln(1+x) x>ln(1+x)

2、 ∫ a b 1 ( x − a ) p d x \int_a^b\frac{1}{(x-a)^p}dx ab(xa)p1dx ,a是瑕点, 且当 p < 1 p<1 p<1时是收敛的。当 p ≥ 1 p\geq1 p1时是发散的

线性代数

1、如果两个矩阵的特征值相同,则必等价 (注: 因为特征值相同,所以矩阵相似,相似必然等价

2、如果矩阵A的特征值和某个对角阵的特征值相同,不一定代表矩阵A能相似对角化 (注: 还需要满足各个特征值的重数等于对应特征向量的个数才行)

3、两个矩阵合同,则它们的正负惯性指数相同 (注:两个矩阵的合同概念的的前提条件是对称矩阵

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Java全栈研发大联盟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值