TensorFlow2.0笔记(一)——神经网络计算

北大MOOC——TF2.0笔记

以下是我的听课笔记,供以后回忆(大多内容来自ppt)

一.神经网络计算

1.人工智能三大学派

行为主义:感知-动作控制系统(例如:行走,避障)

符号主义:理性思维(缺少感性思维)

连接主义(重点):模仿人体神经元连接,神经网络让计算机具备感性思维。

随着人的成长,大量的数据通过视觉、听觉涌入大脑,使我们体内的神经网络连接(即神经元连线上的权重)发生变化(减弱、增强)。

我们需要用计算机仿出类似的神经网络连接关系,让计算机具备感性思维。

准备数据:大量(特征,标签)

搭建网络:搭建神经网络结构

优化参数:反向传播

应用网络:输入新数据(前向传播)

例子:鸢尾花分类

搭建网络:

输入数据:

 前向传播:

损失函数(loss):

结果显示,1类鸢尾花得分最高(即预测结果为1类鸢尾花),但是标签显示此张图片为0类鸢尾花。则判断产生了误差。

误差产生的原因是什么?

因为最初的参数W与b都是随机产生的。换句话说,即预测结果是蒙的。损失函数的作用就是测量预测值与标准答案的差,从而找出最优的参数。

均方误差是常见的损失函数,计算出每次标准答案与预测值的差,求平方,再求和,再除以n。

梯度下降:

目的:找到一组最优的参数W和b,使得损失函数最小。

梯度:损失函数对各参数求偏导之后的向量。

学习率(lr):梯度下降的速度,在图中表现为参数更新的速度。

表示为对损失函数(loss)求偏导。

反向传播:

举例:

首先损失函数对参数w求偏导,结果为2w+2。首次的参数w是随机的,学习率是自己设定的。

代码:

import tensorflow as tf
#设置w的随机初始值为5,设置为可训练
w = tf.Variable(tf.constant(5, dtype=tf.float32))
lr = 0.2  #学习率
epoch = 40  #迭代次数

for epoch in range(epoch):  # for epoch 定义顶层循环,表示对数据集循环epoch次,此例数据集数据仅有1个w,初始化时候constant赋值为5,循环40次迭代。
    with tf.GradientTape() as tape:  # with结构到grads框起了梯度的计算过程。
        loss = tf.square(w + 1)   #损失函数loss设置为(w+1)的平方
    grads = tape.gradient(loss, w)  # .gradient函数告知谁对谁求导
    #w=w-lr*grads
    w.assign_sub(lr * grads)  # .assign_sub 对变量做自减 即:w -= lr*grads 即 w = w - lr*grads
    print("After %s epoch,w is %f,loss is %f" % (epoch, w.numpy(), loss))

# lr初始值:0.2   请自改学习率  0.001  0.999 看收敛过程
# 最终目的:找到 loss 最小 即 w = -1 的最优参数w

 

通过反向传播的公式画出损失函数的图像,找出损失函数梯度减小最少点的w的值。图中w=-1是,损失函数loss的值最小

2.张量

有几个“【 ”,就为几维张量

创建张量:

tf.constant()函数

打印:

a 包括张量的内容、数据类型、形状

a.dtype为a的数据类型

a.shape为a的形状

shape=(,):逗号隔开了几个数字,就为几维张量。

shape=(2,)逗号隔开了一个数字,所以为一维张量。这个张量里有两个元素

shape=(3,4)逗号隔开了两个数字,所以是二维张量,形状是表示是3行四列的

创建指定值的张量:

举例:

创建满足条件的张量:

3.常用函数

举例:

独热码:1代表是,0代表否 

输出的y只有符合了概率分布之后,才可以和独热码的标签进行比较。

tf.nn.softmax(x)之后的结果,0.256代表是第一种鸢尾花的概率为25.6%,且三种类型花概率之和为1。

举例:

import tensorflow as tf
from sklearn import datasets
from matplotlib import pyplot as plt
import numpy as np

x_data = datasets.load_iris().data
y_data = datasets.load_iris().target

# 随机打乱数据(因为原始数据是顺序的,顺序不打乱会影响准确率)
# seed: 随机数种子,是一个整数,当设置之后,每次生成的随机数都一样(为方便教学,以保每位同学结果一致)
#打乱的原因:刚开始人们对事物的认知是没有规律的
np.random.seed(116)  # 使用相同的seed,保证输入特征和标签一一对应
np.random.shuffle(x_data)   #多维数组只换行
np.random.seed(116)
np.random.shuffle(y_data)
tf.random.set_seed(116)
将打乱后的数据集分割为训练集和测试集,训练集为前120行,测试集为后30行
x_train = x_data[:-30]   #训练集  除过后30行剩余的所有元素
y_train = y_data[:-30]
x_test = x_data[-30:]   #测试集   从倒数第30个元素往后的所有元素
y_test = y_data[-30:]

# 转换x的数据类型,否则后面矩阵相乘时会因数据类型不一致报错
x_train = tf.cast(x_train, tf.float32)
x_test = tf.cast(x_test, tf.float32)
# from_tensor_slices函数使输入特征和标签值一一对应。(把数据集分批次,每个批次batch组数据)
#每32组数据打包为一个batch,喂入数据时一个batch一个batch喂
train_db = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(32)
test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)

# 生成神经网络的参数,4个输入特征故,输入层为4个输入节点;因为3分类,故输出层为3个神经元
# 用tf.Variable()标记参数可训练
# 使用seed使每次生成的随机数相同(方便教学,使大家结果都一致,在现实使用时不写seed)
#定义神经网络参数,标记为可训练
w1 = tf.Variable(tf.random.truncated_normal([4, 3], stddev=0.1, seed=1))
b1 = tf.Variable(tf.random.truncated_normal([3], stddev=0.1, seed=1))

#定义超参数和画图用的两个空列表
lr = 0.1  # 学习率为0.1
train_loss_results = []  # 将每轮的loss记录在此列表中,为后续画loss曲线提供数据
test_acc = []  # 将每轮的acc记录在此列表中,为后续画acc曲线提供数据
epoch = 500  # 循环500轮
loss_all = 0  # 每轮分4个step,loss_all记录四个step生成的4个loss的和
# 训练部分
#嵌套循环loss对w和b求偏导
#step分为4次,32 32 32 24 相加为120,每次epoch都分为4个step,并且送入的数据相同
for epoch in range(epoch):
    for step,(x_train,y_train) in enumerate(train_db): # 120个测试数据,32个为一组,所有每epoch分4个step
        # print("iteration",step)
        # print("(x_train,y_train)",(x_train,y_train))
        with tf.GradientTape() as tape:  # with结构记录梯度信息
            y = tf.matmul(x_train, w1) + b1  # 神经网络乘加运算
            y = tf.nn.softmax(y)  # 使输出y符合概率分布(此操作后与独热码同量级,可相减求loss)
            y_ = tf.one_hot(y_train, depth=3)  # 将标签值转换为独热码格式,方便计算loss和accuracy
            # print("y",y)
            # print("y_", y_)
            # print("tf.square(y_-y)",tf.square(y_-y))
            # print("tf.reduce_mean(tf.square(y_-y))",tf.reduce_mean(tf.square(y_-y)))
            loss = tf.reduce_mean(tf.square(y_-y))   #是具体的数值
            loss_all +=loss.numpy()
        grads = tape.gradient(loss,[w1,b1])  #先对loss原函数求导,再带入loss现在的值
        w1.assign_sub(lr*grads[0])
        b1.assign_sub(lr*grads[1])
    print("Epoch {},loss:{}".format(epoch,loss_all/4))
    train_loss_results.append(loss_all/4)
    loss_all= 0
    # 测试部分 每次epoch执行一次
    # total_correct为预测对的样本个数, total_number为测试的总样本数,将这两个变量都初始化为0
    total_correct, total_number = 0, 0
#测试时会遍历测试集中的所有数据
    for x_test, y_test in test_db:
        # 使用更新后的参数进行预测
        y = tf.matmul(x_test, w1) + b1  #计算前向传播的预测结果
        y = tf.nn.softmax(y)      #变为概率分布
        pred = tf.argmax(y, axis=1)  # 返回y中最大值的索引,即预测的分类
        # 将pred转换为y_test的数据类型
        pred = tf.cast(pred, dtype=y_test.dtype)
        # print("y", y)
        # print("pred   ", pred)
        # print("y_test ",y_test)
        # 若分类正确,则correct=1,否则为0,将bool型的结果转换为int型
        correct = tf.cast(tf.equal(pred, y_test), dtype=tf.int32)   #预测和标签一致的记录下来,自加1
        # print("correct",correct)
        # 将每个batch的correct数加起来
        correct = tf.reduce_sum(correct)
        # print("correc2", correct)
        # 将所有batch中的correct数加起来
        total_correct += int(correct)
        # print(total_correct) #与correct结果同
        # total_number为测试的总样本数,也就是x_test的行数,shape[0]返回变量的行数
        total_number += x_test.shape[0]
    # 总的准确率等于total_correct/total_number
    acc = total_correct / total_number   #计算正确率
    test_acc.append(acc)
    print("Test_acc:", acc)
    print("--------------------------")
# 绘制 loss 曲线
plt.title('Loss Function Curve')  # 图片标题
plt.xlabel('Epoch')  # x轴变量名称
plt.ylabel('Loss')  # y轴变量名称
plt.plot(train_loss_results, label="$Loss$")  # 逐点画出trian_loss_results值,并画出连线图标Loss,和下句合用显示)
#连线图标就是右上角的注
plt.legend()  # 画出曲线图标
plt.show()  # 画出图像

# 绘制 Accuracy 曲线
plt.title('Acc Curve')  # 图片标题
plt.xlabel('Epoch')  # x轴变量名称
plt.ylabel('Acc')  # y轴变量名称
plt.plot(test_acc, label="$Accuracy$")  # 逐点画出test_acc值并连线,连线图标是Accuracy
plt.legend()
plt.show()

 一次迭代的结果(四次迭代的结果后,更新参数,loss_all置0):

预测的结果: 

标签转换为独热码:

预测值与标签之间的误差矩阵:

误差的均值:

测试集:预测结果,标签值,正确性

 

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值