- 当我们得到一个模型时,我们想要测试一下该模型的精度,则可以使用Keras的
evaluate_generator
方法来实现,关于该方法的一些介绍可参考evaluate_generator,该方法来自Model
类. evaluate_generator
使用生成器来传入样本- eva_image_path目录结构如下:
– FER2013Test
----0
----1
----2
----3
----4
----5
----6
- 示例代码
from keras.models import load_model,Model
from keras.preprocessing.image import ImageDataGenerator
model=load_model("models/fer2013.h5") # 加载模型
eva_image_path="fer2013plus+/FER2013Test"
eva_datagen=ImageDataGeneraator()
generator=eva_datagen.flow_from_directory(eva_image_path,
target_size=(48,48),
color_mode="grayscale",
batch_size=20,
class_mode='categorical')
history=model.evaluate_generator(generator,steps=175,max_queue_size=10,workers=1, use_multiprocessing=False, verbose=0)
history是一个列表,关于列表元素的含义,使用model.metrics_names
查看