Keras精度验证

  1. 当我们得到一个模型时,我们想要测试一下该模型的精度,则可以使用Keras的evaluate_generator方法来实现,关于该方法的一些介绍可参考evaluate_generator,该方法来自Model类.
  2. evaluate_generator使用生成器来传入样本
  3. eva_image_path目录结构如下:

– FER2013Test
----0
----1
----2
----3
----4
----5
----6

  1. 示例代码
from keras.models import load_model,Model    
from keras.preprocessing.image import ImageDataGenerator

model=load_model("models/fer2013.h5")   # 加载模型

eva_image_path="fer2013plus+/FER2013Test"
eva_datagen=ImageDataGeneraator()
generator=eva_datagen.flow_from_directory(eva_image_path,
                                              target_size=(48,48),
                                              color_mode="grayscale",
                                              batch_size=20,
                                              class_mode='categorical')

history=model.evaluate_generator(generator,steps=175,max_queue_size=10,workers=1, use_multiprocessing=False, verbose=0)

history是一个列表,关于列表元素的含义,使用model.metrics_names查看

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我是一个对称矩阵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值