分组卷积(Group Converlution)

0、前言

首先看普通卷积,用pytorch定义为:

nn.Conv2d(in_channels=3,
          out_channels=4,
          kernel_size=3)

在这里插入图片描述
它可以抽象表示为,堆叠体就是一个卷积核,和上图是对应的:
在这里插入图片描述

1、组卷积

分组卷积鼎鼎大名,不多介绍了,首先从下图来看下普通卷积和分组卷积的区别(左图是普通卷积,右图是分组卷积)

无论哪一种卷积,输入特征图都是12通道,输入通道图都是6通道,只不过中间运算过程不一样。

图中画的小堆叠块每一个就是一个卷积核,比如普通卷积,输入是12通道,那么一个卷积核的尺寸就是(12,k_size,k_size),这样一个卷积核和输入做运算得到一个特征图。我们要的是6输出通道,所以总共有6个这样的卷积核,总尺寸就是(6,12,k_size,k_size)

在这里插入图片描述
实际上无论普通卷积还是分组卷积,卷积核的数量是没有变的,只不过分组卷积的卷积核的尺寸变小了。

可以认为分组卷积就是把普通卷积的每个卷积核砍掉了,砍成小卷积核了。

比如深度可分离卷积中的depthwise卷积,就是组数=输入通道=输出通道的分组卷积,把本来(3,3,3)的卷积核砍成(1,3,3),也即是把每个3通道的卷积核砍成1通道的卷积核,但是卷积核的数量还是3个。
在这里插入图片描述

2、Pytorch的实现

pytorch中conv2的提供了group参数,需要注意的是,从上上图可以看出,分组卷积是将输入特征图和输出特征图都分成了n组,也就是输出通道数和输入通道数都要能被分为n组,否则就要报错。

对于上上图的分组我们使用pytorch实现:

nn.Conv2d(in_channels=12,
          out_channels=6,
          kernel_size=3,
          groups=3)

对于上图(depthwise卷积),我们使用pytorch实现:

nn.Conv2d(in_channels=3,
          out_channels=3,
          kernel_size=3,
          groups=3)

实际上depthwise卷积就是分组数=输入通道数=输出通道数的特殊分组卷积

参考

分组卷积 Group Converlution
Depthwise卷积与Pointwise卷积

<think>好的,我需要回答用户关于GroupConv分组卷积的实现原理的问题。首先,我得回顾一下自己已有的知识,并参考提供的引用资料,确保信息准确。 用户提到的引用中,引用[1]到[4]都涉及分组卷积的相关内容。我需要结合这些资料,整理出分组卷积的基本概念、与普通卷积的区别、具体实现方式以及优势。需要注意的是,用户可能对技术细节感兴趣,比如参数设置、计算量减少的原因等。 首先,分组卷积的定义。根据引用[1]和[4],分组卷积是将输入通道分成多个组,每个组独立进行卷积操作,之后将结果拼接。这和普通卷积所有通道一起处理不同。例如,输入通道为C,分成G组,每组处理C/G个通道,这样每个卷积核的参数会减少。 接下来,实现原理。引用[2]提到在PyTorch中使用nn.Conv2d并设置groups参数,这是关键。需要说明如何在代码中实现,比如输入输出通道数必须能被组数整除。引用[4]中的例子,输入是(10,7,7),用3x3的卷积核,输出是(20,5,5),这时分组卷积的处理方式。 然后,计算量的减少。普通卷积的参数量是C_in * C_out * K * K,而分组卷积则是G * (C_in/G) * (C_out/G) * K * K),总参数量为原来的1/G。引用[3]提到计算并行度的提升,这也是分组卷积的优势之一。 另外,需要提到深度可分离卷积作为分组卷积的特例,当分组数等于输入通道数时,每个通道单独处理,然后逐点卷积合并。这可能帮助用户理解更深层次的应用。 最后,应用场景和优势,如减少过拟合、加速训练、模型轻量化(如MobileNet)。这部分引用[1]和[3]中的内容,说明其在实际中的作用。 在整理这些点时,要确保逻辑清晰,分点说明,并自然地插入引用标记。同时,生成的相关问题需要与分组卷积相关,引导用户进一步探索。</think>### GroupConv分组卷积的实现原理 #### 1. 基本概念 **分组卷积Group Convolution)** 是一种通过将输入特征图的通道划分为多个组,并在每个组内独立进行卷积操作的方法。其核心思想是通过分组减少参数量和计算量,同时提升并行计算效率[^1][^3]。 #### 2. 与普通卷积的区别 - **普通卷积**:所有输入通道共同参与单个卷积核的计算。假设输入通道数为$C_{\text{in}}$,输出通道数为$C_{\text{out}}$,卷积核大小为$K \times K$,则参数量为$C_{\text{in}} \times C_{\text{out}} \times K \times K$[^4]。 - **分组卷积**:将输入通道划分为$G$组,每组独立进行卷积操作。每组输入通道数为$C_{\text{in}} / G$,输出通道数为$C_{\text{out}} / G$,总参数量为$G \times (C_{\text{in}} / G) \times (C_{\text{out}} / G) \times K \times K$,即**普通卷积的$1/G$**[^4]。 #### 3. 实现方式 在深度学习框架中(如PyTorch),分组卷积可通过设置`groups`参数实现: ```python import torch.nn as nn group_conv = nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, groups=4) ``` - **条件**:输入通道数`in_channels`和输出通道数`out_channels`必须能被`groups`整除[^2]。 - **过程**:输入特征图按通道分为$G$组,每组单独卷积后,将结果拼接得到最终输出[^4]。 #### 4. 优势 - **减少参数量**:参数量降低为普通卷积的$1/G$,适合轻量化模型(如MobileNet)。 - **提升并行性**:各组可并行计算,加速训练和推理。 - **增强特征多样性**:分组后不同组可能学习到互补的特征[^4]。 #### 5. 与深度可分离卷积的联系 当分组数$G$等于输入通道数$C_{\text{in}}$时,分组卷积退化为**深度卷积(Depthwise Convolution)**,即每个通道单独处理,再通过$1 \times 1$卷积(逐点卷积)融合通道信息。这是MobileNet等轻量模型的核心模块[^1]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我是一个对称矩阵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值