目标识别
樱木仙僧
Excuse me , young man , you are not a loser ,and you are blaming someone else .
展开
-
SSD-6D: Making RGB-Based 3D Detection and 6D Pose Estimation Great Again—2017(笔记)
SSD-6D: Making RGB-Based 3D Detection and 6D Pose Estimation Great Again—2017(笔记)SSD-6D让RGB图像的3D检测和6D姿态估计更出色—2017(笔记)文章以单帧RGB图像为输入,基于扩展的SSD范式,采用InceptionV4深度网络,预测目标2D bounding box以及目标种类、离散视点和面内旋转在每个...原创 2019-10-11 22:19:15 · 1794 阅读 · 0 评论 -
3D目标识别与姿态估计:Learning descriptors for object recognition and 3D pose estimation(笔记)——2015
通过CNN学习描述符进行3D物体识别和姿态估计(笔记)——2015《Learning descriptors for object recognition and 3D pose estimation》摘要文章以计算描述符来获取目标种类和3D姿态。与基于流形的方法(相似)相比,文章以欧氏距离(同类目标姿态与欧氏距离直接相关)来评估描述符【通过在描述符之间强制执行简单的相似性和相异性约束(约束...原创 2019-07-24 19:50:18 · 2826 阅读 · 0 评论 -
姿态估计:Model Based Training, Detection and Pose Estimation of Texture-Less 3D Objects(笔记)——2012
高杂乱场景下实现基于模型的无纹理3D目标训练、监测和姿态估计(笔记)——2012摘要文章提出了一个使用Kinect体感相机(RGBD sensors),实现对3D目标自动建模、检测和跟踪的构架。基于LINEMOD法(其目标检测部分主要运用基于模板的LINEMOD方法,通过改进,提升13%检测正确率),利用RGBD信息,完成多视角模板匹配,提供姿态粗估计,具有可在线实时学习3D模型能力,可处理大...原创 2019-07-16 23:13:36 · 2722 阅读 · 1 评论 -
应用隐类霍夫森林:Latent-Class Hough Forests for 3D Object Detection and Pose Estimation(笔记)——2014
应用隐类霍夫森林进行3D目标检测和姿态估计(笔记)——2014Latent-Class Hough Forests for 3D Object Detection and Pose Estimation摘要文章提出隐类霍夫森林框架,在高杂波和遮挡环境中进行3D目标检测和姿态估计。将LINEMOD法引入一个尺度不变的patch描述符中,并使用一个新的基于模板的分割函数将其集成到回归森林中。...原创 2019-08-05 17:15:39 · 1401 阅读 · 0 评论 -
CNN兼容着色框架:RGB-D Object Recognition and Pose Estimation based on Pre-trained CNN Features笔记——(2015)
基于预训练的CNN特征实现RGB-D目标识别与姿态估计笔记——(2015)RGB-D Object Recognition and Pose Estimation based on Pre-trained Convolutional Neural Network Features(2015)摘要文章通过深度卷积神经网络(CNN)的转移学习来解决训练数据集的问题,提供丰富的,语义上有意义的特...原创 2019-08-07 22:29:42 · 373 阅读 · 0 评论 -
无监督表示学习:通过预测图像旋转_Supervised Representation Learning By Predicting Image Rotations—2018(笔记)
Unsupervised Representation Learning By Predicting Image Rotations—2018通过预测图像旋转实现无监督表示学习—2018(笔记)摘要文章提出,通过训练ConvNets来识别输入图像的2D旋转来学习图像特征。在质量和数量上证明了这个看似简单的任务,实际上为语义特征学习提供了非常强大的监督信号。引言文章遵循自监督的范例...原创 2019-09-11 20:26:13 · 7362 阅读 · 5 评论 -
用CNN_卷积自编码器:深度学习局部RGB-D Patches for 3D Object Detection and 6D Pose Estimation—2016(笔记)
用CNN_卷积自编码器:深度学习局部 RGB-D Patches for 3D Object Detection and 6D Pose Estimation—2016(笔记)深度学习局部RGB-D补丁实现3D目标检测和6D姿态估计文章采用神经网络与基于局部投票相结合的方法,以卷积自动编码器(CAE)回归特征描述符,实现与包含局部6D姿态投票的密码本进行匹配,最后通过投票和过滤的方法得到最终精...原创 2019-09-20 17:28:53 · 1289 阅读 · 0 评论