(力扣—动态规划)买卖股票的最佳时机
说明
给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。
如果你最多只允许完成一笔交易(即买入和卖出一支股票),设计一个算法来计算你所能获取的最大利润。
注意你不能在买入股票前卖出股票。
示例1:
输入: [7,1,5,3,6,4]
输出: 5
解释: 在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。
注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格。
示例2:
输入: [7,6,4,3,1]
输出: 0
解释: 在这种情况下, 没有交易完成, 所以最大利润为 0。
算法思想:
其实这道题就有点dp的意思了,首先可以肯定的是,这道题肯定可以至少在O(n)的效率完成
方法是声明两个变量
- min_price
- max_pro
存储最小值和最大利润,当遇到比最小值大的就求差与当前最大利润比较 取最大值,遇到更小的就更新最小值。
python code
class Solution:
def maxProfit(self, prices: List[int]) -> int:
if not len(prices): return 0
min_price = prices[0]
max_pro = 0
for temp in prices:
if temp > min_price:
max_pro = max(max_pro, temp - min_price)
else:
min_price = temp
return max_pro
c++ code
class Solution {
public:
int maxProfit(vector<int>& prices) {
if(!prices.size()) return 0;
int maxprofit = 0;
int minprice = prices[0];
for(int i = 1; i < prices.size(); i++)
{
if(prices[i] < minprice)
minprice = prices[i];
else if(maxprofit < prices[i] - minprice)
maxprofit = prices[i] - minprice;
}
return maxprofit;
}
};