6种常见的数据预处理方法

1 数据预处理说明

数据预处理数据的预处理又称属性值的规范化。属性具有多种类型,包括效益型、成本型、区间型、中间型等。这四种属性,效益型属性越大越好,成本型属性越小越好,区间型属性是在某个区间最佳,中间型是越接近某个数越好。

2 数据预处理的作用

在数据分析前,一般要进行属性值的规范化,主要有如下三个作用:
(1)指标正向化处理:属性值有多种类型,为了便于处理,可以进行极大化处理,使得表中任一属性下性能越优的方案变换后的属性值越大。
(2)无量纲化:每一列数值具有不同的单位(量纲),可以对每个指标进行无量纲化。
(3)归一化:属性值表中不同指标的属性值的数值大小差别很大,为了直观,需要把属性值表中的数值归一化,即把表中数值均变换到[0,1]区间上。

3 常见的数据预处理法

3.1 线性变换法

  • 说明:
    ①线性变换法只能处理极大型指标和极小型指标;
    ②采用线性变换法时进行属性规范时,经过变换的最佳属性值不一定为1,最差属性值为0。
  • 处理方法:
    在这里插入图片描述

3.2 极差变换法(0-1变换法)

  • 说明:
    ①极差变换法使每个属性变换后的最优值为1且最差值为0,可以进行标准0-1变换;
    ②极差变换法也是只能处理极大型指标和极小型指标。
  • 举例:
    在这里插入图片描述

3.3 区间型属性的变换

  • 说明:有些属性既非效益型又非成本型,如生师比。显然这种属性不能采用前面介绍的两种方法处理。
  • 举例:
    在这里插入图片描述
    在这里插入图片描述

3.4 中间型指标的变换

  • 举例:
    在这里插入图片描述

3.5 向量归一化法

  • 举例:
    在这里插入图片描述

3.6 标准样本变换法

  • 举例:
    在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值