第一课 : 随机过程简介
一、基本概念
Q1:什么是随机过程?
在介绍什么是随机过程之前,先了解下述两个概念:
【随机】的【不是过程】的是什么东西?
答案是【随机变量】: X ( ω ) : Ω → R X(\omega):\Omega \to \mathcal{R} X(ω):Ω→R
随机变量就是将 样本空间映射到实数域上的一个映射.
【不随机】的【过程】是什么?
答案是【函数】: f ( t ) : T → R f(t):T \to \mathcal{R} f(t):T→R .
函数可以将一段时间按照一定规则确定的映射成一个实数.
而我们要介绍的随机过程其实就是同时兼具 随机性与 过程 性的映射 :
【随机过程】: 同一概率空间上的一族随机变量
数学形式: X = { X ( t , ω ) : t ∈ T , ω ∈ Ω } X= \{X(t,\omega):t \in T,\omega \in \Omega\} X={
X(t,ω):t∈T,ω∈Ω}
也常简写成 : { X t ( ω ) : t ∈ T , ω ∈ Ω } \{X_t(\omega):t\in T,\omega \in \Omega \} {
Xt(ω):t∈T,ω∈Ω} 或 { X ( t ) : t ∈ T } \{X(t):t \in T\} {
X(t):t∈T}
以映射视角看待 : X ( t , ω ) : T × Ω → S X(t,\omega):T \times \Omega \to \mathcal{S} X(t,ω):T×Ω→S
其中 T : 指 标 集 ; Ω : 样 本 空 间 ; S : 状 态 空 间 T : 指标集 ; \Omega:样本空间 ;\mathcal{S} :状态空间 T:指标集;Ω:样本空间;S:状态空间
- 给定 t t t 和 ω \omega ω , X ( t , ω ) X(t,\omega) X(t,ω) 是确定的数
- 给定 t t t 时, X ( t , . ) X(t,.) X(t,.) 是随机变量
- 给定 ω \omega ω 时 , X ( . , ω ) X(.,\omega) X(.,ω) 是 随机过程的一条轨道
图形化理解(参考出处):
图中的三条样本函数曲线可分别看成是三个粒子的位移时间图像,每个粒子在 t t t 时刻的位置均为时间 t t t 的函数。所有粒子在 t t t 时刻的空间位置(图中红点)就是随机变量在 t t t 时刻的状态。因此,随机过程既可看成是“所有随机变量的集合”,也可看成为“所有样本轨道的集合”,而样本轨道只是随机过程集合中的一个元素。
个人理解 : 随机过程就是既有时间维度也有随机属性的二元映射,"横着"看 对于给定样本点 ω 0 \omega_0 ω0, X ( t , ω 0 ) X(t,\omega_0) X(t,ω0) 就是时间 t t t的函数曲线 ;"竖着"看 对于给定的时间点 t 0 t_0 t0 , X ( ω , t 0 ) X(\omega,t_0) X(ω,t0) 就是一个随机变量.
举例: 公交站某天每时每刻等车的人数.
注1 上述对随机过程的定义限定了每个时刻 t t t处的随机变量是在同一个概率空间上取值的,其实这是为了后续分析简便,严格来讲完全可以取不同的概率空间。
Q2:随机过程的刻画
随机过程是用有限维分布族刻画的.
定义【有限维分布族】
设 X = { X t : t ∈ T } X=\{X_t:t \in T\} X={
Xt:t∈T} 是随机过程, 我们称函数族 { F t 1 , . . . , t k ( x 1 , . . . , x k ) : t 1 , . . . , t k ∈ T , k ∈ Z + } \{F_{t_1,...,t_k}(x_1,...,x_k):t_1,...,t_k \in T ,k \in \mathcal{Z}^+ \} {
Ft1,...,tk(x1,...,xk):t1,...,tk∈T,k∈Z+