经验似然课程笔记七:GEE参数和经验似然

GEE参数和经验似然0.引言前面的文章我们都是围绕着均值参数μ\muμ的截面经验似然展开的,但经验似然不仅能用于对均值参数进行推断,也能用于更一般参数进行推断.这篇文章就开始介绍由一般估计方程(GEE)所定义的参数(简称GEE参数)。1.GEE模型GEE模型假设X,X1,..,Xn∼i.i.dFX,X_1,..,X_n\stackrel{\mathrm{i.i.d}}{\sim} FX,X1​,..,Xn​∼i.i.dF 是来自 Rq\mathbf{R}^qRq的随机变量,其中分布FFF未知.
摘要由CSDN通过智能技术生成

GEE参数和经验似然

0.引言

前面的文章我们都是围绕着均值参数 μ \mu μ的截面经验似然展开的,但经验似然不仅能用于对均值参数进行推断,也能用于更一般参数进行推断.

这篇文章就开始介绍由一般估计方程(GEE)所定义的参数(简称GEE参数)。

1.GEE模型

GEE模型
假设 X , X 1 , . . , X n ∼ i . i . d F X,X_1,..,X_n\stackrel{\mathrm{i.i.d}}{\sim} F X,X1,..,Xni.i.dF 是来自 R q \mathbf{R}^q Rq的随机变量,其中分布 F F F未知. p p p维参数 θ \theta θ 由以下方程唯一确定
E { g ( X , θ ) } = 0 E\{g(X,\theta)\}=0 E{ g(X,θ)}=0其中 g = ( g 1 , g 2 , . . , g r ) T g=(g_1,g_2,..,g_r)^T g=(g1,g2,..,gr)T,且这里的期望是关于 F F F的期望.
这就是GEE模型.

注:

  • (1) 方程 E { g ( X , θ ) } = 0 E\{g(X,\theta)\}=0 E{ g(X,θ)}=0被称作 估 计 方 程 \textcolor{blue}{估计方程} ,函数 g g g被称作 估 计 函 数 \textcolor{blue}{估计函数}
  • (2)参数 θ \theta θ 被称作由上述估计方程所定义的参数,简称 G E E 参 数 \textcolor{blue}{GEE参数} GEE.
  • (3) 估 计 方 程 的 个 数 r ≥ 参 数 个 数 p \textcolor{red}{估计方程的个数r \ge 参数个数p} rp

释:

  • (1) 比如对总体均值 μ \mu μ做推断,估计函数可取 g ( x , μ ) = x − μ g(x,\mu)=x-\mu g(x,μ)=xμ,此时的估计方程就变成了 E { X − μ } = 0 E\{X-\mu\}=0 E{ Xμ}=0,这显然是总体均值应该满足的性质. 再比如 :假设 y 1 , y 2 , . . , y n y_1,y_2,..,y_n y1,y2,..,yn是i.i.d的一元随机变量,均值为 θ \theta θ,并且还知道二阶矩是 m ( θ ) m(\theta) m(θ),那么估计方程自然可取 g ( y , θ ) = ( y − θ , y 2 − m ( θ ) ) g(y,\theta)=(y-\theta,y^2-m(\theta)) g(y,θ)=(yθ,y2m(θ)),相应的估计方程就变成了 E { ( y − θ , y 2 − m ( θ ) ) } = ( 0 , 0 ) E\{(y-\theta,y^2-m(\theta))\}=(0,0) E{ (yθ,y2m(θ))}=(0,0).
      \text{ }     \text{ }     \text{ }     \text{ }     \text{ }  其实估计方程就是我们根据已有信息对 参数/总体 F F F 所必须满足的等式表示出来.
  • (2) 注意到估计方程其实是起到了筛选总体分布 F F F的作用,那么方程的个数 r r r越多其实对 F F F的筛选就越精细,如果估计方程的个数 r < r< r<参数个数 p p p, 那么任何一个具有 p p p维参数 θ \theta θ的分布其实都能找到一组 θ \theta θ是满足这个等式约束的,也就无法起到筛选确定 F F F的作用了! 当然了,这里的方程之间不应该是矛盾的(一个方程的解与另一个方程的解不相容),而应该是或多或少地从不同侧面反映出总体 F F F / 参数 θ \theta θ 的特征的.

2.GEE参数的经验似然

先给出前面我们对于均值参数 μ \mu μ做推断时的截面经验似然:
L ( μ ) = sup ⁡ { ∏ i = 1 n p i : p i ≥ 0 , ∑ i = 1 n p i = 1 , ∑ i = 1 n p i ( X i − μ ) = 0 } L(\mu)=\sup\{\prod\limits_{i=1}^np_i:p_i\ge 0,\s

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值