2018, XI Samara Regional Intercollegiate Programming Contest H bfs

You play a new RPG. The world map in it is represented by a grid of n × m cells. Any playing character staying in some cell can move from this cell in four directions — to the cells to the left, right, forward and back, but not leaving the world map.

Monsters live in some cells. If at some moment of time you are in the cell which is reachable by some monster in d steps or less, he immediately runs to you and kills you.

You have to get alive from one cell of game field to another. Determine whether it is possible and if yes, find the minimal number of steps required to do it.

Input
The first line contains three non-negative integers n, m and d (2 ≤ n·m ≤ 200000, 0 ≤ d ≤ 200000) — the size of the map and the maximal distance at which monsters are dangerous.

Each of the next n lines contains m characters. These characters can be equal to «.», «M», «S» and «F», which denote empty cell, cell with monster, start cell and finish cell, correspondingly. Start and finish cells are empty and are presented in the input exactly once.

Output
If it is possible to get alive from start cell to finish cell, output minimal number of steps required to do it. Otherwise, output «-1».

Examples
Input
5 7 1
S.M…M
…….
…….
M…M..
……F
Output
12
Input
7 6 2
S…..
…M..
……
…..M
……
M…..
…..F
Output
11
Input
7 6 2
S…..
…M..
……
……
…..M
M…..
…..F
Output
-1
Input
4 4 2
M…
.S..
….
…F
Output
-1
Note
Please note that monsters can run and kill you on start cell and on finish cell as well.

很有意思的bfs ,
这里的怪物在d 步以内会攻击你,所以我们可以先bfs 将怪物所能打击的范围标记,
如果我们对于从S开始的bfs 发现这个位置距离怪物<=d ,那么就不能走;

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<string>
#include<bitset>
#include<ctime>
#include<deque>
typedef long long ll;
using namespace std;
typedef unsigned long long int ull;
#define maxn 300005
#define ms(x) memset(x,0,sizeof(x))
#define Inf 0x7fffffff
#define inf 0x3f3f3f3f
const long long int mod = 1e9 + 7;
#define pi acos(-1.0)
#define pii pair<int,int>
#define eps 1e-7
#define pll pair<ll,ll>



ll quickpow(ll a, ll b) {
    ll ans = 1;
    a = a % mod;
    while (b > 0) {
        if (b % 2)ans = ans * a;
        b = b / 2;
        a = a * a;
    }
    return ans;
}

int gcd(int a, int b) {
    return b == 0 ? a : gcd(b, a%b);
}

vector<char>s[maxn];
vector<int>dis1[maxn], dis2[maxn];
char ch[maxn];
int n, m, d, sx, sy, fx, fy;
int dx[4] = { 0,1,0,-1 };
int dy[4] = { 1,0,-1,0 };
queue<pii>q;

int bfs(int x, int y) {
    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= m; j++) {
            dis2[i][j] = inf;
        }
    }
    dis2[x][y] = 0;
    if (dis1[x][y] > d)q.push(pii(x, y));
    while (!q.empty()) {
        pii now = q.front();
        q.pop();
        int x = now.first, y = now.second;
        if (x == fx && y == fy)break;
        for (int i = 0; i < 4; i++) {
            int xx = x + dx[i], yy = y + dy[i];
            if (xx<1 || xx>n || yy<1 || yy>m || dis1[xx][yy] <= d || dis2[xx][yy] != inf)
                continue;
            dis2[xx][yy] = dis2[x][y] + 1;
            q.push(pii(xx, yy));
        }
    }
    return dis2[fx][fy];
}

int main()
{
    //ios::sync_with_stdio(false);
    cin >> n >> m >> d;
    for (int i = 1; i <= n; i++) {
        dis1[i].resize(m + 1);
        dis2[i].resize(m + 1);
        s[i].resize(m + 1);
    }
    for (int i = 1; i <= n; i++) {
        scanf("%s", ch + 1);
        s[i].push_back(0);
        for (int j = 1; j <= m; j++) {
            s[i][j] = ch[j];
            if (s[i][j] == 'S')sx = i, sy = j;
            if (s[i][j] == 'F')fx = i, fy = j;
        }
    }
    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= m; j++) {
            dis1[i][j] = inf;
            if (s[i][j] == 'M')dis1[i][j] = 0, q.push(pii(i, j));
        }
    }
    while (!q.empty()) {
        pii now = q.front();
        q.pop();
        int x = now.first, y = now.second;
        for (int i = 0; i < 4; i++) {
            int xx = x + dx[i], yy = y + dy[i];
            if (xx<1 || xx>n || yy<1 || yy>m || dis1[xx][yy] != inf)
                continue;
            dis1[xx][yy] = dis1[x][y] + 1;
            q.push(pii(xx, yy));
        }
    }
    int ans = bfs(sx, sy);
    if (ans == inf)cout << -1 << endl;
    else cout << ans << endl;
}
发布了500 篇原创文章 · 获赞 8 · 访问量 3万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览