# 2018, XI Samara Regional Intercollegiate Programming Contest H bfs

You play a new RPG. The world map in it is represented by a grid of n × m cells. Any playing character staying in some cell can move from this cell in four directions — to the cells to the left, right, forward and back, but not leaving the world map.

Monsters live in some cells. If at some moment of time you are in the cell which is reachable by some monster in d steps or less, he immediately runs to you and kills you.

You have to get alive from one cell of game field to another. Determine whether it is possible and if yes, find the minimal number of steps required to do it.

Input
The first line contains three non-negative integers n, m and d (2 ≤ n·m ≤ 200000, 0 ≤ d ≤ 200000) — the size of the map and the maximal distance at which monsters are dangerous.

Each of the next n lines contains m characters. These characters can be equal to «.», «M», «S» and «F», which denote empty cell, cell with monster, start cell and finish cell, correspondingly. Start and finish cells are empty and are presented in the input exactly once.

Output
If it is possible to get alive from start cell to finish cell, output minimal number of steps required to do it. Otherwise, output «-1».

Examples
Input
5 7 1
S.M…M
…….
…….
M…M..
……F
Output
12
Input
7 6 2
S…..
…M..
……
…..M
……
M…..
…..F
Output
11
Input
7 6 2
S…..
…M..
……
……
…..M
M…..
…..F
Output
-1
Input
4 4 2
M…
.S..
….
…F
Output
-1
Note
Please note that monsters can run and kill you on start cell and on finish cell as well.

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<string>
#include<bitset>
#include<ctime>
#include<deque>
typedef long long ll;
using namespace std;
typedef unsigned long long int ull;
#define maxn 300005
#define ms(x) memset(x,0,sizeof(x))
#define Inf 0x7fffffff
#define inf 0x3f3f3f3f
const long long int mod = 1e9 + 7;
#define pi acos(-1.0)
#define pii pair<int,int>
#define eps 1e-7
#define pll pair<ll,ll>

ll quickpow(ll a, ll b) {
ll ans = 1;
a = a % mod;
while (b > 0) {
if (b % 2)ans = ans * a;
b = b / 2;
a = a * a;
}
return ans;
}

int gcd(int a, int b) {
return b == 0 ? a : gcd(b, a%b);
}

vector<char>s[maxn];
vector<int>dis1[maxn], dis2[maxn];
char ch[maxn];
int n, m, d, sx, sy, fx, fy;
int dx = { 0,1,0,-1 };
int dy = { 1,0,-1,0 };
queue<pii>q;

int bfs(int x, int y) {
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
dis2[i][j] = inf;
}
}
dis2[x][y] = 0;
if (dis1[x][y] > d)q.push(pii(x, y));
while (!q.empty()) {
pii now = q.front();
q.pop();
int x = now.first, y = now.second;
if (x == fx && y == fy)break;
for (int i = 0; i < 4; i++) {
int xx = x + dx[i], yy = y + dy[i];
if (xx<1 || xx>n || yy<1 || yy>m || dis1[xx][yy] <= d || dis2[xx][yy] != inf)
continue;
dis2[xx][yy] = dis2[x][y] + 1;
q.push(pii(xx, yy));
}
}
return dis2[fx][fy];
}

int main()
{
//ios::sync_with_stdio(false);
cin >> n >> m >> d;
for (int i = 1; i <= n; i++) {
dis1[i].resize(m + 1);
dis2[i].resize(m + 1);
s[i].resize(m + 1);
}
for (int i = 1; i <= n; i++) {
scanf("%s", ch + 1);
s[i].push_back(0);
for (int j = 1; j <= m; j++) {
s[i][j] = ch[j];
if (s[i][j] == 'S')sx = i, sy = j;
if (s[i][j] == 'F')fx = i, fy = j;
}
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
dis1[i][j] = inf;
if (s[i][j] == 'M')dis1[i][j] = 0, q.push(pii(i, j));
}
}
while (!q.empty()) {
pii now = q.front();
q.pop();
int x = now.first, y = now.second;
for (int i = 0; i < 4; i++) {
int xx = x + dx[i], yy = y + dy[i];
if (xx<1 || xx>n || yy<1 || yy>m || dis1[xx][yy] != inf)
continue;
dis1[xx][yy] = dis1[x][y] + 1;
q.push(pii(xx, yy));
}
}
int ans = bfs(sx, sy);
if (ans == inf)cout << -1 << endl;
else cout << ans << endl;
}

©️2019 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客 