A Research Problem UVA - 10837 欧拉函数 φ

A mad researcher was trying to get fund for his research project but it is a pity that after a year he
was able to collect 500$ only. So all his research work has gone to ashtray. The mad researcher now
wants his revenge, so he wants you to solve his unfinished research problem within a very limited time.
You will be happy to know that his research is related to Eulers phi function.
Euler’s phi (or totient) function of a positive integer n is the number of integers in {1, 2, 3, … , n}
which are relatively prime to n. This is usually denoted as ϕ(n). The table below shows the value of
phi function for first few numbers.
integer n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
ϕ(n) 1 1 2 2 4 2 6 4 6 4 10 4 12 6 8 8
Given the value of n, it is very easy to find the value of ϕ(n) using the formula below:
ϕ(n) = n

p|n
(1 −
1
p
) // Here p is prime
According to this formula ϕ(12) = ϕ(22 ∗ 3) = 12(1 −
1
2
)(1 −
1
3
) = 12 ∗
1
2

2
3 = 4.
But your task is not quite straightforward, given the value of ϕ(n) you will have to find the minimum
possible value of n.
Input
The input file contains at most 100 lines of input. Each line contains a positive integer phin (1 ≤
phin ≤ 100000000). Input is terminated by a line where phin = 0. This line should not be processed.
Output
For each line of input produce one line of output. This line contains the serial of output followed by
two integers phin and n. The first integer is the integer taken as input and the second integer is the
minimum possible value of n, for which ϕ(n) = phin. All the input numbers will be such that for all
given input there will be a possible value of n less than 200000000.

给定 φ(n) ,求满足的最小 n ;

大暴力即可;
其实跑的还可以;

思路: φ(n) = n* ∏ ( pi-1 ) ; 对于这个式子我们可以化为 p1^n1 ( p1-1 ) p2^n2 * ( p2-1 )…….;那么我们暴力 dfs 即可解决

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#pragma GCC optimize("O3")
using namespace std;
#define maxn 20005
#define inf 0x3f3f3f3f
#define INF 0x7fffffff
typedef long long  ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define sq(x) (x)*(x)
#define eps 1e-6
const int N = 2500005;

inline int read()
{
    int x = 0, k = 1; char c = getchar();
    while (c < '0' || c > '9') { if (c == '-')k = -1; c = getchar(); }
    while (c >= '0' && c <= '9')x = (x << 3) + (x << 1) + (c ^ 48), c = getchar();
    return x * k;
}

ll gcd(ll a, ll b) {
    return b == 0 ? a : gcd(b, a%b);
}

int prime[maxn+5];
int primeNum, vis[maxn+5], n, suit[maxn+5], suitN, res;

void getPrime(int n) {
    primeNum = 0;
    ms(vis);
    for (int i = 2; i <=(n); i++) {
        if (vis[i])continue;
        prime[primeNum++] = i;
    //  vis[i] = 1;
        for (int j = 2 * i; j <= n; j += i)vis[j] = 1;
    }
}

void chose(int n) {
    suitN = 0;
    for (int i = 0; i < primeNum && (prime[i] - 1)*(prime[i] - 1) <= n; i++) {
        if (n % (prime[i] - 1) == 0)suit[suitN++] = prime[i];
        else continue;
    }
}

int check(int n) {
    for (int i = 0; i < primeNum && prime[i] <= sqrt(n); i++)
        if (n%prime[i]==0)return 0;
    for (int i = 0; i < suitN; i++)
        if (suit[i] == n&&vis[i]==1)return 0;
    return 1;
}

void dfs(int dep, int now, int cnt) {
    if (dep == suitN) {
        if (now == 1)res = min(res, cnt);
        else if (check(now + 1)) {
            cnt *= (now + 1); res = min(res, cnt);
        }
        return;
    }
    dfs(dep + 1, now, cnt);
    if (now % (suit[dep] - 1))return;
    now /= (suit[dep] - 1);
    vis[dep] = 1; cnt *= suit[dep];
    dfs(dep + 1, now, cnt);
    while (now % (suit[dep]) == 0) {
        now /= (suit[dep]); cnt *= suit[dep];
        dfs(dep + 1, now, cnt);
    }
    vis[dep] = 0;

}


int main()
{
    ios::sync_with_stdio(false);

    getPrime(maxn);
    int cnt = 0;
    while (cin >> n && n) {
        cnt++;res = inf;
        chose(n); ms(vis);
        dfs(0, n, 1);
        cout << "Case " << cnt << ": " << n << ' ' << res << endl;
    }
    return 0;
}
欧拉函数(Euler's Totient Function),也称为积性函数,是指小于等于正整数n的数中与n互质的数的个数。我们通常用φ(n)表示欧拉函数。 具体来说,如果n是一个正整数,那么φ(n)表示小于等于n的正整数中与n互质的数的个数。例如,φ(1)=1,因为1是唯一的小于等于1的正整数且1与1互质;φ(2)=1,因为小于等于2的正整数中只有1与2互质;φ(3)=2,因为小于等于3的正整数中与3互质的数是1和2。 欧拉函数的计算方法有很多,下面介绍两种常见的方法: 1. 分解质因数法 将n分解质因数,假设n的质因数分别为p1, p2, …, pk,则φ(n) = n × (1 - 1/p1) × (1 - 1/p2) × … × (1 - 1/pk)。例如,对于n=30,我们将其分解质因数得到30=2×3×5,则φ(30) = 30 × (1-1/2) × (1-1/3) × (1-1/5) = 8。 2. 筛法 我们可以使用筛法(Sieve)来计算欧拉函数。具体地,我们可以先将φ(1)至φ(n)全部初始化为其下标值,然后从2开始遍历到n,将所有能被当前遍历到的数整除的数的欧拉函数值减1即可。例如,对于n=6,我们先初始化φ(1)=1, φ(2)=2, φ(3)=3, φ(4)=4, φ(5)=5, φ(6)=6,然后从2开始遍历,将2的倍数的欧拉函数值减1,即φ(4)=φ(6)=2;然后遍历3,将3的倍数的欧拉函数值减1,即φ(6)=2。最终得到φ(1)=1, φ(2)=1, φ(3)=2, φ(4)=2, φ(5)=4, φ(6)=2。 欧拉函数在数论中有很重要的应用,例如RSA算法的安全性就基于欧拉函数的难解性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值