初等数论 课堂笔记 第三章 -- 欧拉函数

吴正尧老师 初等数论 第五周 关于欧拉函数的笔记。
摘要由CSDN通过智能技术生成

欧拉函数

定义

   m ∈ Z > 0 m\in { {\mathbb{Z}}_{>0}} mZ>0,定义欧拉函数 定 义 一 : φ ( m ) = ∣ { n ∈ Z > 0 : 1 ≤ n ≤ m ,   gcd ⁡ ( n , m ) = 1 } ∣ 定义一:\varphi \left( m \right)=\left| \left\{ n\in { {\mathbb{Z}}_{>0}}:1\le n\le m,\text{ }\gcd \left( n,m \right)=1 \right\} \right| φ(m)={ nZ>0:1nm, gcd(n,m)=1}其中 ∣ ⋅ ∣ \left| \centerdot \right| 表示集合中元素的个数。
  有些教材也定义欧拉函数为
定 义 二 : φ ( m ) = ∣ { n ∈ Z ≥ 0 : 0 ≤ n ≤ m − 1 , gcd ⁡ ( n , m ) = 1 } ∣ 定义二:\varphi \left( m \right)=\left| \left\{ n\in { {\mathbb{Z}}_{\ge 0}}:0\le n\le m-1,\gcd \left( n,m \right)=1 \right\} \right| φ(m)={ nZ0:0nm1,gcd(n,m)=1}
这两种定义是等价的。


例子
  对每个 m m m,利用穷举法求其欧拉函数。
m φ ( m ) 对 应 的 既 约 剩 余 系 1 1 { 1 ‾ }   /   { 0 ‾ } 2 1 { 1 ‾ } 3 2 { 1 ‾ , 2 ‾ } 4 2 { 1 ‾ , 3 ‾ } 5 4 { 1 ‾ , 2 ‾ , 3 ‾ , 4 ‾ } 6 2 { 1 ‾ , 5 ‾ } 7 6 { 1 ‾ , 2 ‾ , 3 ‾ , 4 ‾ , 5 ‾ , 6 ‾ } 8 4 { 1 ‾ , 3 ‾ , 5 ‾ , 7 ‾ } 9 6 { 1 ‾ , 2 ‾ , 4 ‾ , 5 ‾ , 7 ‾ , 8 ‾ } 10 4 { 1 ‾ , 3 ‾ , 7 ‾ , 9 ‾ } 11 10 { 1 ‾ , 2 ‾ , 3 ‾ , 4 ‾ , 5 ‾ , 6 ‾ , 7 ‾ , 8 ‾ , 9 ‾ , 10 ‾ } 12 4 { 1 ‾ , 5 ‾ , 7 ‾ , 11 ‾ } 13 12 { 1 ‾ , 2 ‾ , 3 ‾ , 4 ‾ , 5 ‾ , 6 ‾ , 7 ‾ , 8 ‾ , 9 ‾ , 10 ‾ , 11 ‾ , 12 ‾ } \begin{matrix} m & \varphi \left( m \right) & 对应的既约剩余系 \\ 1 & 1 & \left\{ \overline{1} \right\}\text{ }/\text{ }\left\{ \overline{0} \right\} \\ 2 & 1 & \left\{ \overline{1} \right\} \\ 3 & 2 & \left\{ \overline{1},\overline{2} \right\} \\ 4 & 2 & \left\{ \overline{1},\overline{3} \right\} \\ 5 & 4 & \left\{ \overline{1},\overline{2},\overline{3},\overline{4} \right\} \\ 6 & 2 & \left\{ \overline{1},\overline{5} \right\} \\ 7 & 6 & \left\{ \overline{1},\overline{2},\overline{3},\overline{4},\overline{5},\overline{6} \right\} \\ 8 & 4 & \left\{ \overline{1},\overline{3},\overline{5},\overline{7} \right\} \\ 9 & 6 & \left\{ \overline{1},\overline{2},\overline{4},\overline{5},\overline{7},\overline{8} \right\} \\ 10 & 4 & \left\{ \overline{1},\overline{3},\overline{7},\overline{9} \right\} \\ 11 & 10 & \left\{ \overline{1},\overline{2},\overline{3},\overline{4},\overline{5},\overline{6},\overline{7},\overline{8},\overline{9},\overline{10} \right\} \\ 12 & 4 & \left\{ \overline{1},\overline{5},\overline{7},\overline{11} \right\} \\ 13 & 12 & \left\{ \overline{1},\overline{2},\overline{3},\overline{4},\overline{5},\overline{6},\overline{7},\overline{8},\overline{9},\overline{10},\overline{11},\overline{12} \right\} \\ \end{matrix} m12345678910111213φ(m)112242646410412{ 1} / { 0}{ 1}{ 1,2}{ 1,3}{ 1,2,3,4}{ 1,5}{ 1,2,3,4,5,6}{ 1,3,5,7}{ 1,2,4,5,7,8}{ 1,3,7,9}{ 1,2,3,4,5,6,7,8,9,10}{ 1,5,7,11}{ 1,2,3,4,5,6,7,8,9,10,11,12}

引理1: 设 p p p是素数, e ∈ Z > 0 e\in { {\mathbb{Z}}_{>0}} eZ>0,则有 φ ( p e ) = p e − p e − 1 = p e − 1 ( p − 1 ) \varphi \left( { {p}^{e}} \right)={ {p}^{e}}-{ {p}^{e-1}}={ {p}^{e-1}}\left( p-1 \right) φ(pe)=pepe1=pe1(p1)特别地,有 φ ( p ) = p − 1 \varphi \left( p \right)=p-1 φ(p)=p1

证法一
  设
S = { n ∈ Z > 0 : 1 ≤ n ≤ p e ,   gcd ⁡ ( n , p e ) = 1 } T = { k p : k ∈ Z > 0 ,   1 ≤ k p ≤ p e } R = { 1 , 2 , ⋯   , p e } \begin{aligned} & S=\left\{ n\in { {\mathbb{Z}}_{>0}}:1\le n\le { {p}^{e}},\text{ }\gcd \left( n,{ {p}^{e}} \right)=1 \right\} \\ & T=\left\{ kp:k\in { {\mathbb{Z}}_{>0}},\text{ }1\le kp\le { {p}^{e}} \right\} \\ & R=\left\{ 1,2,\cdots ,{ {p}^{e}} \right\} \\ \end{aligned} S={ nZ>0:1npe, gcd(n,pe)=1}T={ kp:kZ>0, 1kppe}R={ 1,2,,pe}
以下我们将证明 S = R − T S=R-T S=RT

  1. ∀ n ∈ S \forall n\in S nS,有 n ∈ Z > 0   &   1 ≤ n ≤ p e   ⇒   n ∈ R n\in { {\mathbb{Z}}_{>0}}\text{ }\And \text{ }1\le n\le { {p}^{e}}\text{ }\Rightarrow \text{ }n\in R nZ>0 & 1npe  nR
    ∃ k ∈ Z > 0 ,   s . t .   n = k p \exists k\in { {\mathbb{Z}}_{>0}},\text{ }s.t.\text{ }n=kp kZ>0, s.t. n=kp,则有
    gcd ⁡ ( n , p e ) = gcd ⁡ ( k p , p e ) ≥ p > 1 \gcd \left( n,{ {p}^{e}} \right)=\gcd \left( kp,{ {p}^{e}} \right)\ge p>1 gcd(n,pe)=gcd(kp,pe)p>1
    gcd ⁡ ( n , p e ) = 1 \gcd \left( n,{ {p}^{e}} \right)=1 gcd(n,pe)=1矛盾。由反证法,有 ∀ k ∈ Z > 0 ,   n ≠ k p   ⇒   n ∉ T \forall k\in { {\mathbb{Z}}_{>0}},\text{ }n\ne kp\text{ }\Rightarrow \text{ }n\notin T kZ>0, n=kp  n/T
    因此有 n ∈ R − T n\in R-T nRT

  2. ∀ n ∈ ( R − T ) ,   n ∈ Z > 0   &   1 ≤ n ≤ p e \forall n\in \left( R-T \right),\text{ }n\in { {\mathbb{Z}}_{>0}}\text{ }\And \text{ }1\le n\le { {p}^{e}} n(RT), nZ>0 & 1npe
    且有 n ∉ T   ⇒   ∀ k ∈ Z > 0 ,   n ≠ k p   ⇒   p ∣ n n\notin T\text{ }\Rightarrow \text{ }\forall k\in { {\mathbb{Z}}_{>0}},\text{ }n\ne kp\text{ }\Rightarrow \text{ }p\cancel{|}n n/T  kZ>0, n=kp  p n
    由于 p p p是素数,因此 p e { {p}^{e}} pe的标准分解式就是 p e { {p}^{e}} pe,只有素因子 p p p;而 n n n的标准分解式不含 p p p,也就有
    gcd ⁡ ( n , p e ) = 1 \gcd \left( n,{ {p}^{e}} \right)=1 gcd(n,pe)=1
    于是 n ∈ S n\in S nS

  3. 综上,有 S = R − T S=R-T S=RT
    φ ( p e ) = ∣ S ∣ = ∣ R − T ∣ = ∣ R ∣ − ∣ T ∣   ( ∵ T ⊆ R ) = p e − p e − 1 = p e − 1 ( p − 1 ) \begin{aligned} & \varphi \left( { {p}^{e}} \right)=\left| S \right|=\left| R-T \right| \\ & =\left| R \right|-\left| T \right|\text{ }\left( \because T\subseteq R \right) \\ & ={ {p}^{e}}-{ {p}^{e-1}} \\ & ={ {p}^{e-1}}\left( p-1 \right) \\ \end{aligned} φ(pe)=S=RT=RT (TR)=pepe1=pe1(p1)


证法二
  设
R = { 1 , 2 , ⋯   , p e } R=\left\{ 1,2,\cdots ,{ {p}^{e}} \right\} R={ 1,2,,pe}
由于 R ⊆ Z R\subseteq \mathbb{Z} RZ,因此有
R = Z ⋂ R = ( K 0 ⋃ K 1 ⋃ ⋯ ⋃ K p − 1 ) ⋂ R = ( K 0 ⋂ R ) ⋃ ( K 1 ⋂ R ) ⋃ ⋯ ⋃ ( K p − 1 ⋂ R ) \begin{aligned} & R=\mathbb{Z}\bigcap R \\ & =\left( { {K}_{0}}\bigcup { {K}_{1}}\bigcup \cdots \bigcup { {K}_{p-1}} \right)\bigcap R \\ & =\left( { {K}_{0}}\bigcap R \right)\bigcup \left( { {K}_{1}}\bigcap R \right)\bigcup \cdots \bigcup \left( { {K}_{p-1}}\bigcap R \right) \\ \end{aligned} R=ZR=(K0K1Kp1)R=(K0R)(K1R)(Kp1R)
其中 K 0 , K 1 , ⋯   , K p − 1 { {K}_{0}},{ {K}_{1}},\cdots ,{ {K}_{p-1}} K0,K1,,Kp1是模 p p p的剩余类。
R ′ = { 1 , 2 , ⋯   , p } R'=\left\{ 1,2,\cdots ,p \right\} R={ 1,2,,p},则 R ′ R' R是模 p p p的一个完全剩余系。将 R ′ R' R作以下分解
R ′ = R 1 + R 2 R'={ {R}_{1}}+{ {R}_{2}} R=R1+R2
其中
R 1 = { n ∈ R : gcd ⁡ ( n , p ) = 1 } ,   R 2 = { n ∈ R : gcd ⁡ ( n , p ) > 1 } { {R}_{1}}=\left\{ n\in R:\gcd \left( n,p \right)=1 \right\},\text{ }{ {R}_{2}}=\left\{ n\in R:\gcd \left( n,p \right)>1 \right\} R1={ nR:gcd(n,p)=1}, R2={ nR:gcd(n,p)>1}
∀ i ∈ R 1 \forall i\in { {R}_{1}} iR1, i i i对应的剩余类 K i { {K}_{i}} Ki是既约剩余系, ∀ j ∈ K i ,   gcd ⁡ ( j , p ) = 1 \forall j\in { {K}_{i}},\text{ }\gcd \left( j,p \right)=1 jKi, gcd(j,p)=1
∀ i ∈ R 2 \forall i\in { {R}_{2}} iR2, i i i对应的剩余类 K i { {K}_{i}} Ki不是既约剩余系,且 ∀ j ∈ K i ,   gcd ⁡ ( j , p ) > 1 \forall j\in { {K}_{i}},\text{ }\gcd \left( j,p \right)>1 jKi, gcd(j,p)>1
于是有
φ ( p e ) = ∑ i ∈ R 1 ∣ K i ∩ R ∣ = ∑ i ∈ R 1 ∣ R ∣ ∣ R ′ ∣ = φ ( p ) ∣ R ∣ ∣ R ′ ∣ = ( p − 1 ) p e p = p e − 1 ( p − 1 ) \varphi \left( { {p}^{e}} \right)=\sum\limits_{i\in { {R}_{1}}}^{ {}}{\left| { {K}_{i}}\cap R \right|}=\sum\limits_{i\in { {R}_{1}}}^{ {}}{\frac{\left| R \right|}{\left| R' \right|}}=\varphi \left( p \right)\frac{\left| R \right|}{\left| R' \right|}=\left( p-1 \right)\frac{ { {p}^{e}}}{p}={ {p}^{e-1}}\left( p-1 \right) φ(pe)=iR1KiR=iR1RR=φ(p)RR=(p1)ppe=pe1(p1)

引理2: 设 a , n ∈ Z > 0 a,n\in { {\mathbb{Z}}_{>0}} a,nZ>0,则有 gcd ⁡ ( a , n ) = 1   ⇔   ∃ b ∈ Z ,   a b ≡ 1 (   m o d   n ) \gcd \left( a,n \right)=1\text{ }\Leftrightarrow \text{ }\exists b\in \mathbb{Z},\text{ }ab\equiv 1\left( \bmod n \right) gcd(a,n)=1  bZ, ab1(modn)

证明
  gcd ⁡ ( a , n ) = 1   ⇔   ∃ b , m ∈ Z ,   s . t .   a b + n m = 1   ⇔   a b = ( − m ) n + 1 ⇔   a b ≡ 1 (   m o d   n ) \begin{aligned} & \text{ }\gcd \left( a,n \right)=1\text{ } \\ & \Leftrightarrow \text{ }\exists b,m\in \mathbb{Z},\text{ }s.t.\text{ }ab+nm=1\text{ } \\ & \Leftrightarrow \text{ }ab=\left( -m \right)n+1 \\ & \Leftrightarrow \text{ }ab\equiv 1\left( \bmod n \right) \\ \end{aligned}  gcd(a,n)=1  b,mZ, s.t. ab+nm=1  ab=(m)n+1 ab1(modn)

引理3: 设 a , m , n ∈ Z > 0 a,m,n\in { {\mathbb{Z}}_{>0}} a,m,nZ>0,则有 gcd ⁡ ( a , m ) = gcd ⁡ ( a , n ) = 1   ⇔   gcd ⁡ ( a , m n ) = 1 \gcd \left( a,m \right)=\gcd \left( a,n \right)=1\text{ }\Leftrightarrow \text{ }\gcd \left( a,mn \right)=1 gcd(a,m)=gcd(a,n)=1  gcd(a,mn)=1

证明

  1. ( ⇒ ) \left( \Rightarrow \right) ()
    gcd ⁡ ( a , m ) = gcd ⁡ ( a , n ) = 1   ⇒   ∃ s 1 , 2 , t 1 , 2 ∈ Z ,   s . t .   a s 1 + m t 1 = 1 ,   a s 2 + n t 2 = 1 \gcd \left( a,m \right)=\gcd \left( a,n \right)=1\text{ }\Rightarrow \text{ }\exists { {s}_{1,2}},{ {t}_{1,2}}\in \mathbb{Z},\text{ }s.t.\text{ }a{ {s}_{1}}+m{ {t}_{1}}=1,\text{ }a{ {s}_{2}}+n{ {t}_{2}}=1 gcd(a,m)=gcd(a,n)=1  s1,2,t1,2Z, s.t. as1+mt1=1, as2+nt2=1
      ( a s 1 + m t 1 ) ( a s 2 + n t 2 ) = 1 ⇒ a ( a s 1 s 2 + n s 1 t 2 + m t 1 s 2 ) + ( m n ) ( t 1 t 2 ) = 1   ⇒   gcd ⁡ ( a , m n ) = 1 \begin{aligned} & \text{ }\left( a{ {s}_{1}}+m{ {t}_{1}} \right)\left( a{ {s}_{2}}+n{ {t}_{2}} \right)=1 \\ & \Rightarrow a\left( a{ {s}_{1}}{ {s}_{2}}+n{ {s}_{1}}{ {t}_{2}}+m{ {t}_{1}}{ {s}_{2}} \right)+\left( mn \right)\left( { {t}_{1}}{ {t}_{2}} \right)=1\text{ } \\ & \Rightarrow \text{ }\gcd \left( a,mn \right)=1 \\ \end{aligned}  (as1+mt1)(as2+nt2)=1a(as1s2+ns1t2+mt1s2)+(mn)(t1t2)=1  gcd(a,mn)=1

  2. ( ⇐ ) \left( \Leftarrow \right) ()
      a s + m n t = 1 { ⇔ a s + m ( n t ) = 1   ⇔   gcd ⁡ ( a , m ) = 1 ⇔ a s + n ( m t ) = 1   ⇔   gcd ⁡ ( a , n ) = 1 \begin{aligned} & \text{ }as+mnt=1 \\ & \left\{ \begin{aligned} & \Leftrightarrow as+m\left( nt \right)=1\text{ }\Leftrightarrow \text{ }\gcd \left( a,m \right)=1 \\ & \Leftrightarrow as+n\left( mt \right)=1\text{ }\Leftrightarrow \text{ }\gcd \left( a,n \right)=1 \\ \end{aligned} \right. \\ \end{aligned}  as+mnt=1{ as+m(nt)=1  gcd(a,m)=1as+n(mt)=1  gcd(a,n)=1

引理4: m , n ∈ Z > 0    ⁣ ⁣ &  ⁣ ⁣  gcd ( m , n ) = 1 m,n\in { {\mathbb{Z}}_{>0}}\text{ }\!\!\And\!\!\text{ gcd}\left( m,n \right)=1 m,nZ>0 & gcd(m,n)=1 ⇒ φ ( m n ) = φ ( m ) φ ( n ) \Rightarrow \varphi \left( mn \right)=\varphi \left( m \right)\varphi \left( n \right) φ(mn)=φ(m)φ(n)


   gcd ⁡ ( m , n ) ≠ 1 \gcd \left( m,n \right)\ne 1 gcd(m,n)=1时结果可能成立也可能不成立。
证明
   φ ( 1 ) = 1 \varphi \left( 1 \right)=1 φ(1)=1,因此不妨设 m > 1 ,   n > 1 m>1,\text{ }n>1 m>1, n>1,将 1 1 1 m n mn mn写成下面矩阵的格式。
( 1 2 ⋯ m m + 1 m + 2 ⋯ 2 m ⋮ ⋮ ⋱ ⋮ ( n − 1 ) m + 1 ( n − 1 ) m + 2 ⋯ n m ) \left( \begin{matrix} 1 & 2 & \cdots & m \\ m+1 & m+2 & \cdots & 2m \\ \vdots & \vdots & \ddots & \vdots \\ \left( n-1 \right)m+1 & \left( n-1 \right)m+2 & \cdots & nm \\ \end{matrix} \right) 1m+1(n1)m+12m+2(n1)m+2m2mnm
对于第一行的元素 a ∈ { 1 , 2 , ⋯   , m } a\in \left\{ 1,2,\cdots ,m \right\} a{ 1,2,,m}

  1. gcd ⁡ ( a , m ) = 1 \gcd \left( a,m \right)=1 gcd(a,m)=1,则同一列的元素 k m + a ,   k ∈ { 0 , 1 , ⋯   , n − 1 } km+a,\text{ }k\in \left\{ 0,1,\cdots ,n-1 \right\} km+a, k{ 0,1,,n1}均满足
    gcd ⁡ ( k m + a , m ) = 1 \gcd \left( km+a,m \right)=1 gcd(km+a,m)=1
    事实上,由于 gcd ⁡ ( a , m ) = 1 \gcd \left( a,m \right)=1 gcd(a,m)=1,根据引理2 ∃ b ∈ Z ,   s . t .   a b ≡ 1 (   m o d   m ) \exists b\in \mathbb{Z},\text{ }s.t.\text{ }ab\equiv 1\left( \bmod m \right) bZ, s.t. ab1(modm),故有
    ( k m + a ) b = ( k b ) m + a b ≡ 0 + 1 = 1 (   m o d   m ) \left( km+a \right)b=\left( kb \right)m+ab\equiv 0+1=1\left( \bmod m \right) (km+a)b=(kb)m+ab0+1=1(modm)
    因此有 gcd ⁡ ( k m + a , m ) = 1 \gcd \left( km+a,m \right)=1 gcd(km+a,m)=1
  2. d = gcd ⁡ ( a , m ) > 1 d=\gcd \left( a,m \right)>1 d=gcd(a,m)>1,则同一列元素 k m + a , k ∈ { 0 , 1 , ⋯   , n − 1 } km+a,k\in \left\{ 0,1,\cdots ,n-1 \right\} km+a,k{ 0,1,,n1}均满足
    gcd ⁡ ( k m + a , m ) > 1 \gcd \left( km+a,m \right)>1 gcd(km+a,m)>1
    事实上,设 a = a 1 d ,   m = m 1 d a={ {a}_{1}}d,\text{ }m={ {m}_{1}}d a=a1d, m=m1d,则有
    gcd ⁡ ( k m + a , m ) = gcd ⁡ ( k ( m 1 d ) + ( a 1 d ) , m 1 d ) = gcd ⁡ ( d ( k m 1 + a 1 ) , m 1 d ) ≥ d > 1 \begin{aligned} & \gcd \left( km+a,m \right)=\gcd \left( k\left( { {m}_{1}}d \right)+\left( { {a}_{1}}d \right),{ {m}_{1}}d \right) \\ & =\gcd \left( d\left( k{ {m}_{1}}+{ {a}_{1}} \right),{ {m}_{1}}d \right) \\ & \ge d>1 \\ \end{aligned} gcd(km+a,m)=gcd(k(m1d)+(a1d),m1d)=gcd(d(km1+a1),m1d)d>1
  3. ∣ { a ∈ Z > 0 : 1 ≤ a ≤ m ,   gcd ⁡ ( a , m ) = 1 } ∣ = φ ( m ) \left| \left\{ a\in { {\mathbb{Z}}_{>0}}:1\le a\le m,\text{ }\gcd \left( a,m \right)=1 \right\} \right|=\varphi \left( m \right) { aZ>0:1am, gcd(a,m)=1}=φ(m)
    因此与 m m m互素的数有 φ ( m ) \varphi \left( m \right) φ(m)个整列。

  另一方面, 0 ,

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此账号已停更

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值