- 博客(36)
- 资源 (6)
- 收藏
- 关注
原创 [nltk_data] Error loading stopwords: <urlopen error [WinError 10054]
后燃解压到corpora文件夹里就可以了。
2023-10-08 17:45:22 1818
原创 MYSQL 数据库分区
key分区也有两种,常规key和线性key,常规key对分区字段采用的是MD5算法,线性key对分区字段采用的是二次方算法。对采用range分区或者list分区的表,进行二次分区,二次分区只能为hash分区或者key分区。当表中只有主键primary key或只有唯一键unique key时,分区列必须包含主键或唯一键中的部分或全部字段,不允许出现主键或唯一键中字段以外的其它字段。id为1的保存到了p1分区,id为10,15,20的保存到了p2分区,在分区字段上基于分区个数的取模运算,根据余数分区。
2023-05-25 11:49:18 258
原创 kafka receiving network data closing socket
再安装 python -m pip install kafka-python。卡夫卡 ‘’ % self.async。
2023-05-18 16:14:26 118
原创 解决selenium.common.exceptions.NoSuchElementException: Message: no such element:
selenium.common.exceptions.NoSuchElementException: Message: no such element: Unable to locate element
2022-09-05 09:21:29 2952
原创 SQLalchemy 增删改查
from sqlalchemy import func# 插入一条with get_session() as session: session.add(user_table(_id=111, u_id=222, _name="aaa", _data="aaa")) session.commit() # 多条with get_session() as session: session.execute(user_tab.
2022-03-30 17:57:05 296
原创 MYSQL全文检索 MATCH AGAINST 转为 SQLalchemy
MYSQL全文检索 MATCH AGAINST 转为 SQLalchemy
2022-03-29 15:13:39 562
原创 PC和移动端浏览器请求头
Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; Trident/4.0; .NET CLR 1.1.4322; .NET CLR 1.0.3705; .NET CLR 2.0.50727; .NET CLR 3.0.04506.648; .NET CLR 3.5.21022; .NET CLR 3.0.4506.2152; .NET CLR 3.5.30729)Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_5
2020-12-26 10:25:10 4193
转载 Pandas的可视化操作(利用pandas得到图表)
折线图import pandas as pdimport numpy as npimport matplotlib.pyplot as pltdf = pd.DataFrame(np.random.randn(10,4),index=pd.date_range('2018/12/18', periods=10), columns=list('ABCD'))df.plot()plt.show()条形图import pandas as pdimport numpy as npim
2020-09-20 22:38:55 432
原创 Win10安装pyspider 避坑
准备文件:pycurl-7.43.0.4-cp36-cp36m-win_amd64.whlpyspider-0.3.10-py3-none-any.whlphantomjs以上三个文件再我博客有上传我的python版本是3.6.8先装phantomjs,将bin路径添加到环境变量path,下载两个文件:pycurl-7.43.0.4-cp36-cp36m-win_amd64.whl和pyspider-0.3.10-py3-none-any.whl,先安装pycurl,pip+install+下
2020-09-18 09:32:54 386
原创 数据库操作
数据库操作import pymysqldb = pymysql.connect(host="localhost", user="root", password="root", db="test5")c = db.cursor()# 查询c.execute('select * from books')# row = c.fetchall()# print(row)# 遍历每个for i in range(c.rowcount): row = c.fetchone() pr
2020-09-14 00:15:14 172
转载 Redis面试知识点
https://baijiahao.baidu.com/s?id=1660009541007805174&wfr=spider&for=pcRedis 是什么Redis 是 C 语言开发的一个开源的(遵从 BSD 协议)高性能键值对(key-value)的内存数据库,可以用作数据库、缓存、消息中间件等。它是一种 NoSQL非关系型数据库。Redis 作为一个内存数据库:性能优秀,数据在内存中,读写速度非常快,支持并发 10W QPS。单进程单线程,是线程安全的,采用 IO 多路复.
2020-09-05 14:35:47 73
原创 Linux安装MangoDB及常用命令
vim /etc/yum.repos.d/mongodb-org-4.2.repo插入[mongodb-org-4.2]name=MongoDB Repositorybaseurl=https://repo.mongodb.org/yum/redhat/$releasever/mongodb-org/4.2/x86_64/gpgcheck=1enabled=1gpgkey=https://www.mongodb.org/static/pgp/server-4.2.asc按Esc键,:w
2020-08-25 18:41:03 376
原创 爬虫 获取WebElement内容
爬取 response_comment = browser.get(title_urls) parameter_list = browser.find_elements_by_xpath('//*[@id="detail"]/div[2]/div[1]/div[1]/ul[2]') print(parameter_list)输出[<selenium.webdriver.remote.webelement.WebElement (session="d
2020-08-10 21:50:13 3145
转载 什么是Cookie、Session及使用时考虑的问题
CookieCookie存储在客户端,是由服务器发送到浏览器并保存在本地的数据。当浏览器再次发送请求时被携带到服务器。有单独域名,不同级域名间可共享。Session存储于服务端,基于Cookie实现的一种记录服务器和客户端会话状态的机制。SessionId则返给浏览器并存储在Cookie中Cookie 和 Session 的区别安全性: Session 比 Cookie 安全,Session 是存储在服务器端的,Cookie 是存储在客户端的。存取值的类型不同: Cookie 只支持存字
2020-08-04 19:29:57 247
原创 redis启动警告
[root@localhost src]# ./redis-server2881:C 04 Aug 2020 10:48:05.811 # oO0OoO0OoO0Oo Redis is starting oO0OoO0OoO0Oo2881:C 04 Aug 2020 10:48:05.811 # Redis version=5.0.7, bits=64, commit=00000000, modified=0, pid=2881, just started2881:C 04 Aug 2020 10:48
2020-08-04 10:58:36 756
原创 十秒钟了解正向代理、反向代理
十秒钟了解正向代理、反向代理正向代理(媒婆我需要个女朋友)Client:嘿,媒婆(Proxy)我给你我的信息(端口)和联系方式(ip),你帮我找个女朋友 (Server)吧特点:女朋友不知道我是谁(Client地址),避免骚扰(攻击),提前缓存 Server 的内容反向代理(好闺蜜你替我面基吧)Server:好闺蜜(Proxy)你替我去跟Client面基吧,放心他没见过我(ip)总结:正向代理:由客户端设立,服务器不了解真正的客户端是谁;使
2020-07-31 20:18:10 176
原创 linux上数据库安装笔记
下载mysql仓库#mysql的安装源wget https://dev.mysql.com/get/mysql80-community-release-el7-3.noarch.rpmyum是软件管理工具,管理rpm,yum可以自动安装需要的依赖软件安装mysql安装源rpm -ivh mysql80-community-release-el7-3.noarch.rpm安装mysql8yum install mysql-server寻找初始root密码:( A temporary pa
2020-07-02 22:06:11 159
转载 Vue 指令v-bind和v-on,事件修饰符
(1)v-bind、v-onv-bind的基本用法是动态更新HTML元素上的属性,如id,class,href,src等。v-on,点击事件上<style> .left{ color:red; }</style><body><div id="app"> <div v-bind:class="{left:isleft}">{{message}}</div> <div v-o
2020-06-22 20:36:51 342
原创 Microsoft Visual Studio 报错 LNK1181 无法打开输入文件“..\..\3rdparty\lib\x64\pthreadVC2.lib”
用Release编译darknet_no_gpu时报错,先确保安装opencv,添加opencv安装的路径![在这里插入图片描述](https://img-blog.csdnimg.cn/20200618155555666.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzQwMjc5NTYw,siz e_16,color_FFFFFF,t.
2020-06-18 16:00:10 1663
原创 cv2.error: OpenCV(4.2.0) C:\projects\opencv-python\opencv\modules\dnn\src\dnn.cpp:4723: error: (-2:U
解决方法:加个.pb文件路径
2020-06-14 11:58:48 2030
转载 机器学习:正则化、特征选择方法、特征降维、分类模型评估笔记
L1正则化和L2正则化参考:https://blog.csdn.net/skyxmstar/article/details/56494563正则化项即罚函数,该项对模型向量进行“惩罚”,从而避免单纯最小二乘问题的过拟合问题。训练的目的是最小化目标函数,则C越小,意味着惩罚越小,分类间隔也就越小,分类错误也就越少L1范数是指向量中各个元素绝对值之和,用于特征选择; 得到稀疏解,即起到变量筛选的作用L2范数 是指向量各元素的平方和然后求平方根,提升模型的泛化能力,使求解更优化, 模型更稳,既防止过拟
2020-06-13 09:52:28 992
原创 VGG16改写猫狗数据集
使用VGG16深度为D的列训练猫狗数据集。convx-y中x表示卷积核尺寸,y表示特征通道数。比如conv3-256表示3x3的卷积核并且通道数为256。from keras.models import Sequentialfrom keras.layers import Convolution2D,MaxPooling2D,Flatten,Dense,Dropoutfrom keras.optimizers import SGDimport cv2import numpy as npimpo
2020-06-08 20:10:45 475
转载 SGD、 卷积层、VGG笔记
笔记:SGD使用参数的梯度,沿梯度方向更新参数,并重复这个步骤多次,从而逐渐靠近最优参数,这个过程称为随机梯度下降法(stochastic gradient descent),简称SGD公式:SGD最优化更新路径:缺点:SGD低效的根本原因是,梯度的方向并没有指向最小值的方向。可用Momentum、AdaGrad、Adam这3种方法来取代SGDSGD、Momentum、AdaGrad、Adam最优化方法比较:用得较多的是将主要使用SGD或者Adam权重初始值ReluBatch No
2020-06-07 19:58:44 666
原创 CNN手写字母识别-Keras版本
#coding:utf-8from tensorflow.examples.tutorials.mnist import input_datafrom keras.models import Sequentialfrom keras.layers import Convolution2D,MaxPooling2D,Flatten,Dense,Dropoutfrom keras.optimizers import Adamfrom keras.utils import plot_model#
2020-06-05 10:39:11 981
转载 softmax、sigmoid激活函数,相对熵、交叉熵、信息熵
sigmoid激活函数的性质:其中:x: 输入float:表示浮点型数据exp:对其求指数f(x): 函数输出sigmoid激活函数的使用:Sigmoid函数用于逻辑回归模型中的二进制分类在创建人造神经元时,Sigmoid函数用作激活函数。在统计学中,S形函数图像是常见的累积分布函数。softmax激活函数x: 输入exp:对其求指数f(x): 函数输出softmax激活函数的使用softmax激活函数应用于多类分类在构建神经网络中,在不同的层使用
2020-06-05 10:37:31 388
转载 卷积神经网络:Keras深度学习
全文引用:卷积神经网络之Keras深度学习卷积神经网络之优缺点优点 • 共享卷积核,对高维数据处理无压力 • 无需手动选取特征,训练好权重,即得特征分类效果好缺点 • 需要调参,需要大样本量,训练最好要GPU • 物理含义不明确(也就说,我们并不知道没个卷积层到底提取到的是什么特征,而且神经网络本身就是一种难以解释的“黑箱模型”)卷积神经网络的常用框架Caffe • 源于Berkeley的主流CV工具包,支持 C++,python,matlab • Model
2020-06-04 21:42:14 308
原创 神经网络+波士顿房价数据集
import numpy as npimport matplotlib.pyplot as pltfrom sklearn import datasetsimport tensorflow as tffrom sklearn.preprocessing import StandardScalerboston = datasets.load_boston()X = boston.data[:,5:6]y = boston.target.reshape(-1,1)#归一化standardS
2020-06-03 10:59:35 1812
原创 深度学习:猫狗数据集搭建网络训练集
1.读取图片,使用cv2转成功统一大小,分割训练集和测试2.搭建网络并训练模型3.输出测试集准确率from tensorflow.examples.tutorials.mnist import input_dataimport tensorflow as tfimport numpy as npimport cv2import globfrom sklearn.model_selection import train_test_splitimage_size = 60X = []y
2020-06-03 10:48:47 848
原创 神经网络之前向传播,求图片的激活函数sigmoid
前向传播,求图片的激活函数sigmoid对于这个28x28=784个像素的输入值,如果我们如图有2个隐藏层每层16个神经元,那么第1层每个神经元需要784个权重w,共784x16=12544个w,以及16个偏置b;第2层需要16x16=256个权重w和16个偏置b;第三层需要10x16=160个权重和10个偏置b;这些加在一起是:12544+256+160+16+16+10=13002import cv2import numpy as npdef sigmoid(inx): return
2020-05-29 16:05:11 420
Linux安装MYSQL步骤(1).docx
2020-09-14
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人