特征工程:缺失值填充总结(众数,中数,KNN近邻填充,预测填充)

面试不仅仅是一个找工作的过程,还是一个向面试官交流学习的过程。之前的某次面试中,聊到了缺失值填充方法,经面试官指点学到了一些技能,下面简要总结一下。

常见的缺失值填充方法有填充默认值、均值、众数、KNN填充、以及把缺失值作为新的label通过模型来预测等方式,为了介绍这几种填充方法的使用以及填充效果,本文将在真实数据集上进行简单比较。

1. 数据集介绍

数据集来源于 天池精准医疗大赛——人工智能辅助糖尿病遗传风险预测。该数据集共有1000条数据,特征共83维,加上id和label共85列,每维特征缺失数量范围为0~911。为了简单比较各种填充方法的效果,我们选取最简单的二分类模型(逻辑回归),选取F1 score作为评测指标。

读取数据集代码如下:


   
   
  1. train_data = pd.read_csv( 'train_data.csv', encoding= 'gbk') # 读取数据集
  2. filter_feature = [ 'id', 'label'] # 过滤无用的维度
  3. features = []
  4. for x in train_data.columns: # 取特征
  5. if x not in filter_feature:
  6. features.append(x)
  7. train_data_x = train_data[features]
  8. train_data_y = train_data[ 'label']
  9. X_train, X_test, y_train, y_test = train_test_split(train_data_x, train_data_y, random_state= 1) # 划分训练集、测试集

2. 常见的填充方法

(1)填充固定值

选取某个固定值/默认值填充缺失值。

train_data.fillna(0, inplace=True) # 填充 0
   
   

(2)填充均值

对每一列的缺失值,填充当列的均值。

train_data.fillna(train_data.mean(),inplace=True) # 填充均值
   
   

(3)填充中位数

对每一列的缺失值,填充当列的中位数。

train_data.fillna(train_data.median(),inplace=True) # 填充中位数
   
   

(4)填充众数

对每一列的缺失值,填充当列的众数。由于存在某列缺失值过多,众数为nan的情况,因此这里取的是每列删除掉nan值后的众数。


   
   
  1. train_data.fillna(train_data.mode(),inplace= True) # 填充众数,该数据缺失太多众数出现为nan的情况
  2. features_mode = {}
  3. for f in features:
  4. print f, ':', list(train_data[f].dropna().mode().values)
  5. features_mode[f] = list(train_data[f].dropna().mode().values)[ 0]
  6. train_data.fillna(features_mode,inplace= True)

(5)填充上下条的数据

对每一条数据的缺失值,填充其上下条数据的值。


   
   
  1. train_data.fillna(method= 'pad', inplace= True) # 填充前一条数据的值,但是前一条也不一定有值
  2. train_data.fillna( 0, inplace= True)
  3. train_data.fillna(method= 'bfill', inplace= True) # 填充后一条数据的值,但是后一条也不一定有值
  4. train_data.fillna( 0, inplace= True)

(6)填充插值得到的数据

用插值法拟合出缺失的数据,然后进行填充。


   
   
  1. for f in features: # 插值法填充
  2. train_data[f] = train_data[f].interpolate()
  3. train_data.dropna(inplace= True)

(7)填充KNN数据

填充近邻的数据,先利用knn计算临近的k个数据,然后填充他们的均值。(安装fancyimpute)除了knn填充,fancyimpute还提供了其他填充方法。


   
   
  1. from fancyimpute import KNN
  2. train_data_x = pd.DataFrame(KNN(k= 6).fit_transform(train_data_x), columns=features)

(8)填充模型预测的值

把缺失值作为新的label,建立模型得到预测值,然后进行填充。这里选择某个缺失值数量适当的特征采用随机森林RF进行拟合,其他缺失特征采用均值进行填充。


   
   
  1. new_label = 'SNP46'
  2. new_features = []
  3. for f in features:
  4. if f != new_label:
  5. new_features.append(f)
  6. new_train_x = train_data[train_data[new_label].isnull()== False][new_features]
  7. new_train_x.fillna(new_train_x.mean(), inplace= True) # 其他列填充均值
  8. new_train_y = train_data[train_data[new_label].isnull()== False][new_label]
  9. new_predict_x = train_data[train_data[new_label].isnull()== True][new_features]
  10. new_predict_x.fillna(new_predict_x.mean(), inplace= True) # 其他列填充均值
  11. new_predict_y = train_data[train_data[new_label].isnull()== True][new_label]
  12. rfr = RandomForestRegressor(random_state= 666, n_estimators= 10, n_jobs= -1)
  13. rfr.fit(new_train_x, new_train_y)
  14. new_predict_y = rfr.predict(new_predict_x)
  15. new_predict_y = pd.DataFrame(new_predict_y, columns=[new_label], index=new_predict_x.index)
  16. new_predict_y = pd.concat([new_predict_x, new_predict_y], axis= 1)
  17. new_train_y = pd.concat([new_train_x, new_train_y], axis= 1)
  18. new_train_data = pd.concat([new_predict_y,new_train_y])
  19. train_data_x = new_train_data[features]
  20. train_data_y = train_data[ 'label']

3. 实验对比

(1)评测指标

选取F1 score进行评测。


   
   
  1. def countF1(train, predict):
  2. count = 0 # 统计预测的正确的正样本数
  3. for i in range(len(train)):
  4. if predict[i] == 1 and train[i] == 1:
  5. count += 1
  6. pre = count * 1.0 / sum(predict) # 准确率
  7. recall = count * 1.0 / sum(train) # 召回率
  8. return 2 * pre * recall / (pre + recall)

(2)对比结果

填充方式训练集_F1测试集_F1
默认值00.705167170.59689922
均值(mean)0.701863350.67768595
中位数(median)0.708268330.67479675
众数(mode)0.704791340.68852459
上一个数据(pad)0.704097120.62711864
下一个数据(bfill)0.669811320.60169492
插值0.690184050.61333333
KNN_30.710769230.66393443
KNN_60.708978330.68852459
KNN_100.704791340.68032787
随机森林_feature30.5714285710.4
随机森林_feature460.5851393190.41509434

(3)实验小结

对于缺失值的处理,除了直接删除缺失严重的特征外,还可以选择各种各样的填充方法。对于每一种填充方式而言,都有其适用的场景,没有绝对的好坏之分,因此在做数据预处理时,要多尝试几种填充方法,选择表现最佳的即可。

 

本文完整代码已上传至git(https://github.com/AHNU/fill_missing_values)

参考文献

1. 训练模型填充空值(fill null)的几种方法

2. https://www.kaggle.com/pmarcelino/comprehensive-data-exploration-with-python

  • 0
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值