5 插值算法
5.1 最近领插值
- 从坐标(x,y)的四个相邻整数坐标中找到离它最近的一个
- 例:(2.3,4.7),四个相邻整数坐标分别为:(2,4)、(2,5)、(3,4)、(3,5)离(2.3,4.7)最近的是(2,5)
5.2双线性插值
- (x,y):([x],[y])、([x]+1,[y])、([x],[y]+1)、([x]+1,[y]+1)
- f(x,y)=(1+ab-a-b)*1+(a-ab)*2+(b-1)*3+ab *4
5.2.1 利用函数resize()
void resize(InputArray src,OutputArray dst,Size dsize,double fx=0,double fy=0,int interpolation=INTER_LINEAR)
- src:输入图像矩阵
- dst:输出图像矩阵
- dsize:二元元组(宽,高),输出图像的大小
- fx:在水平方向上缩放比例,默认0
- fy:在垂直方向上缩放比例,默认0
- interpolation:插值法,INTE_NEAREST,INTE_LINEAR(默认)
#include <opencv2/core/core.hpp>
#include<opencv2/highgui/highgui.hpp>
#include<opencv2/imgproc/imgproc.hpp>
#include<iostream>
using namespace std;
using namespace cv;
int main() {
String pic_name = "C://Users//lsh//Desktop//1.jpg";
Mat img = imread(pic_name, IMREAD_GRAYSCALE);
if (!img.data)
return -1;
Mat dst;
resize(img, dst, Size(img.cols / 2, img.rows / 2), 0.5, 0.5);
imshow("img", img);
imshow("dst", dst);
waitKey(0);
return 0;
}
5.2.2利用warpAffine()函数
warpAffine(src,M,dsize[,dst[,flags[,borderMode[,borderValue]]]])
- src:输入图像矩阵
- M:2行3列的仿射变换矩阵
- dsize:二元元组(宽,高),输出图像的大小
- flags:插值法,INTE_NEAREST,INTE_LINEAR(默认)
- borderMode:填充模式,BORDER_CONSTANT
- borderValue:当borderMode=BORDER_CONSTANT时的填充值
- 需要创建缩放仿射矩阵
#include <opencv2/core/core.hpp>
#include<opencv2/highgui/highgui.hpp>
#include<opencv2/imgproc/imgproc.hpp>
#include<iostream>
using namespace std;
using namespace cv;
int main() {
String pic_name = "C://Users//lsh//Desktop//1.jpg";
Mat img = imread(pic_name, IMREAD_GRAYSCALE);
if (!img.data)
return -1;
Mat s = (Mat_<float>(2, 3) << 0.5, 0, 0, 0, 0.5, 0);
Mat dst;
warpAffine(img, dst,s, Size(img.cols / 2, img.rows / 2));
imshow("img", img);
imshow("dst", dst);
waitKey(0);
return 0;
}