密码学数学基础——群、环、域

一、基础概念

  1. 幺元 ,若对于一个二元运算+(+并不是指一般意义的加法,它可以指代任何二元运算),在有若干个数的集合中,存在一个元素,对于其他任何元素,通过这个二元运算之后,结果都是其他任何元素本身,则称这个元素是这个集合对于该二元运算+的幺元,记为e。以加法为例,0就是在整数集合中加法的幺元;
  2. 零元 ,若对于一个二元运算+(+并不是指一般意义的加法,它可以指代任何二元运算),在有若干个数的集合中,存在一个元素,对于其他任何元素,通过这个二元运算之后,结果都是这个元素本身,则称这个数是这个集合对于该二元运算+的零元,记为θ。以乘法为例,0就是在整数集合中加法的零元;
  3. 逆元,若对于一个二元运算+(+并不是指一般意义的加法,它可以指代任何二元运算),存在一个元素a,满足a+a-1=e(e为该运算的幺元),则a与a-1互为逆元。以加法为例,整数这个集合中,一个数和它的相反数互为逆元。

二、群

  1. 群的定义
    满足以下公理的集合G称为群:(注:×为广义运算)
    ①在运算×下是封闭的;
    ②存在幺元(单位元),且唯一;
    ③对于G中的任意的元,都有与其对应的逆元,且唯一;
    ④对于G中的任意的元,都满足结合律。
  2. 阿贝尔群的定义
    ①在运算×下是封闭的;
    ②存在幺元(单位元),且唯一;
    ③对于G中的任意的元,都有与其对应的逆元,且唯一;
    ④对于G中的任意的元,都满足结合律;
    ⑤对于G中的任意的元,都满足交换律。
  3. 半群的定义
    ①在运算×下是封闭的;
    ②对于G中的任意的元,都满足结合律。
  4. 含幺半群的定义
    ①在运算×下是封闭的;
    ②存在幺元(单位元),且唯一;
    ③对于G中的任意的元,都满足结合律。
  5. 群的性质
    ①当一个群G中只含有有限元素,那么这些元素的个数记为群G的阶,记作#G。
    ②一个群G中的任何子群在相同的运算下如果也是群,则称之为群G的一个子群。
    ③如果存在一个最小正整数k,满足gk=e,则称k为群G中元素g的阶。
    ④有限群中任意元素β的阶可整除该群的阶。
    ⑤相较于无限群,有限群因为其易在计算机中实现,故其在密码学中的作用更大。
  6. 群的例子
    整数群:
    ①对于任何两个整数a和b,它们的和也是整数。满足条件①,关于运算+是闭集;
    ②对于任何整数a,存在0 + a = a + 0 = a,满足条件②存在幺元;
    ③对于任何整数a,存在另一个整数b使得a + b = b + a = 0,则整数b叫做整数a的逆元,记为a-1,满足条件③;
    ④对于任何整数a,b和c,存在(a + b) + c=a + (b + c)。满足条件④,关于运算+满足结合律。

三、环

  1. 环的定义
    满足以下公理的集合R称为环:
    ⑴对于加法的代数系统+:(环在加法下是一个阿贝尔群)
    ①在运算+下是封闭的;
    ②存在幺元(单位元),且唯一;
    ③对于R中的任意的元,都有与其对应的逆元,且唯一;
    ④对于R中的任意的元,都满足结合律;
    ⑤对于R中的任意的元,都满足交换律。
    ⑵对于乘法的代数系统×:(环在乘法下是一个半群)
    ①在运算×下是封闭的;
    ②对于R中的任意的元,都满足结合律;
    ⑶关于运算+和×:
    对于R中的任意的元,都满足分配律。
  2. 环的性质
    ①若环中的乘法运算满足交换律,即ab=ba,这样的环称为交换环。
    ②若环中的乘法运算拥有幺元,这样的环称之为含幺环。
  3. 环的例子
    整数环:
    整数集Z对于运算+是一个阿贝尔群;
    对于运算×是一个半群;
    所以集合Z是一个环(整数环)

四、域

  1. 域的定义
    满足以下公理的集合F称为域:
    ⑴对于加法的代数系统+:(域在加法下是一个阿贝尔群)
    ①在运算+下是封闭的;
    ②存在幺元(单位元),且唯一;
    ③对于F中的任意的元,都有与其对应的逆元,且唯一;
    ④对于F中的任意的元,都满足结合律;
    ⑤对于F中的任意的元,都满足交换律。
    ⑵对于乘法的代数系统×:(域(0元素除外)在乘法下是一个阿贝尔群)
    ①在运算+下是封闭的;
    ②存在幺元(单位元),且唯一;
    ③对于F中的任意的元(除0元素),都有与其对应的逆元,且唯一;
    ④对于F中的任意的元,都满足结合律;
    ⑤对于F中的任意的元,都满足交换律。
    ⑶关于运算+和×:
    对于F中的任意的元,都满足分配律。
  2. 域的性质
    ①域的一个子集如果在继承的加法和乘法运算下本身也是一个域,就称为域。例如,实数域便是复数域的一个子域。
    ②含有有限个元素的域称为有限域Fq或伽罗华域GF(q),其中q为该有限域的元素个数。
    ③含有2m个元素的有限域称为二进制域。
    ④含有p(p为奇素数)个元素的有限域称为二进制域。
    ⑤含有pm(p为素数)个元素的有限域称为特征值为p的域。在特征值为p的有限域中,表达式( a + b ) p m = a p m + b p m (a+b)^{p^m} =a^{p^m}+b^{p^m}(a+b)pm=apm+bpm恒成立。
  3. 域的例子
    有限域:
    举例来说,如10以内的非负整数,就是一个有限域。
    一般描述有限域,通过对整数取模(mod)的余数来表示,比如所有整数模5的结果,就是一个有限域(只包含0~4),这是5这个素数的1次方。
  • 3
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值