给定 n 个非负整数,用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,且宽度为 1 。
求在该柱状图中,能够勾勒出来的矩形的最大面积。
示例 1:
输入:heights = [2,1,5,6,2,3] 输出:10 解释:最大的矩形为图中红色区域,面积为 10
示例 2:
输入: heights = [2,4] 输出: 4
提示:
1 <= heights.length <=105
0 <= heights[i] <= 104
本题和接雨水的思路类似。接雨水,是在遍历每个单位的同时,以该单位为基准,向左向右找到最高的柱子作为“边界”。本题其实更好理解一点,就是在遍历各单位时,将该单位的高作为矩形的高,将向左向右拓展时第一个低于该高度的单位作为矩形宽的边界,计算所有可能矩形的面积,取最大值。用双指针会超时,可以用动态规划记录每个单位向左向右拓展时第一个低于该单位高度的单位的下标。向左找minLeft可以先看该单位左边单位是否低于该单位,如高于,则找左边单位的minLeft,看对应高度是否低于该单位,如高于,继续找,直至找到低于该单位的单位,取其下标,记录到该单位的minLeft。minRight的获取方法同理。矩形的宽可以由minRight-minLeft-1得到。
class Solution {
public int largestRectangleArea(int[] heights) {
int sum;
int res = 0;
int len = heights.length;
int[] minLeft = new int[len];
int[] minRight = new int[len];
minLeft[0] = -1;
for (int i = 1; i < len; i++) {
int ml = i - 1;
while (ml >= 0 && heights[ml] >= heights[i]) ml = minLeft[ml];
minLeft[i] = ml;
}
minRight[len - 1] = len;
for (int i = len - 2; i >= 0; i--) {
int mr = i + 1;
while (mr < len && heights[mr] >= heights[i]) mr = minRight[mr];
minRight[i] = mr;
}
for (int i = 0; i < len; i++) {
sum = heights[i] * (minRight[i] - minLeft[i] - 1);
res = Math.max(sum, res);
}
return res;
}
}
本题同样可以用单调栈,而且也很好理解。和接雨水要求栈底到栈顶从大到小不同,本题要求从小到大。需获取的栈元素(柱子的下标)仍是待处理元素(不同的是待处理元素对应高度比栈顶元素对应高度低才需要处理)、栈顶元素、栈顶元素下的元素。其分别对应的是矩形右边界的右相邻柱子下标、遍历当前柱子下标(对应高度为矩形高)、矩形左边界的左相邻柱子下标。矩形覆盖的柱子下标,都在计算之前矩形面积的过程中被弹出了。需要注意的是,要在第一个柱子之前、最后一个柱子之后添加高度为0的柱子,以作为左边界为0,或右边界为len - 1的矩形的边界相邻元素。还有就是因为在开头添加了一个高度为0的柱子,循环条件可以不用加!stack.isEmpty()了。
class Solution {
public int largestRectangleArea(int[] heights) {
int len = heights.length;
if (len == 1) return heights[0];
Deque<Integer> stack = new LinkedList<>();
int[] newHeights = new int[len + 2];
for (int i = 0; i < len; i++) {
newHeights[i + 1] = heights[i];
}
len += 2;
stack.push(0);
int res = 0;
for (int i = 1; i < len; i++) {
if (newHeights[i] > newHeights[stack.peek()]) {
stack.push(i);
}
else if (newHeights[i] == newHeights[stack.peek()]) {
stack.pop();
stack.push(i);
}
else {
while (newHeights[i] < newHeights[stack.peek()]) {
int mid = stack.pop();
int left = stack.peek();
int right = i;
int width = right - left - 1;
res = Math.max(res, width * newHeights[mid]);
}
stack.push(i);
}
}
return res;
}
}
精简代码:
class Solution {
public int largestRectangleArea(int[] heights) {
int len = heights.length;
if (len == 1) return heights[0];
Deque<Integer> stack = new LinkedList<>();
int[] newHeights = new int[len + 2];
for (int i = 0; i < len; i++) {
newHeights[i + 1] = heights[i];
}
len += 2;
stack.push(0);
int res = 0;
for (int i = 1; i < len; i++) {
while (newHeights[i] < newHeights[stack.peek()]) {
int mid = stack.pop();
int left = stack.peek();
int right = i;
int width = right - left - 1;
res = Math.max(res, width * newHeights[mid]);
}
stack.push(i);
}
return res;
}
}