python
文章平均质量分 70
Mrstarguang
AI+通信双领域的结合
展开
-
常见的概率分布并生成随机数
一、均匀分布(uniform distribution)在相同长度间隔的分布概率是等可能的。1.概率密度函数:2.分布函数:3.期望和方差:4.生成随机数import numpy as npnp.random.rand(10)#生成十个均匀分布的随机数np.random.rand(2,4)#生成八个均匀分布的随机数,维度2*4二、正态分布(normal distribution)在相同长度间隔的分布概率是等可能的。1.概率密度函数:2.分布函数:原创 2020-10-27 15:00:21 · 3556 阅读 · 0 评论 -
3D图形的绘制
一.3D可视化图表1.3D柱状图、3D直方图import randomimport numpy as npimport matplotlib.pyplot as pltimport matplotlib.dates as mdatesfrom mpl_toolkits.mplot3d import Axes3Dfig = plt.figure()ax = fig.add_subplot(111, projection='3d')for z in range(1, 4): x原创 2020-10-21 21:09:14 · 504 阅读 · 0 评论 -
用Matplotlib绘制各种图形
一.绘制简单图形1.折线图import matplotlib.pyplot as pltimport numpy as np#单条sin函数x=np.linspace(0.1, 10, 100)y=np.sin(x)plt.plot(x,y, linestyle='-', linewidth=1,label='Sin() by plot()')plt.legend()plt.show()#多条曲线a=np.random.random((9,3))*2y1=a[0:,1]y2=原创 2020-10-21 20:22:42 · 1236 阅读 · 0 评论 -
SciPy高级数学计算库
线性代数运算import numpy as npfrom scipy import linalgarr = np.array([[1, 9, 2],[4, 8, 3],[5, 7, 6]])#计算行列式print(linalg.det(arr))#逆矩阵print(linalg.inv(arr))#奇异值分解print(linalg.svd(arr))快速傅里叶变换import scipyimport scipy.fftpackimport pylabfrom scip原创 2020-10-21 15:48:26 · 219 阅读 · 0 评论 -
python数据存取操作
文本文件的数据存取1.CSVimport csv#读with open("TXT_COMMA.txt") as cf: lines=csv.reader(cf) for line in lines: print(line)#写headers=['A','B']rows=[(1,4),(2,5),(3,6)]f=open("TXT_COMMA2.txt ",'a+')wf=csv.writer(f)wf.writerow(headers)wf.wr原创 2020-10-21 15:25:11 · 812 阅读 · 0 评论 -
常常被人忽略的python基础语法
python 编写常量板块import sysclass _CONSTANT: class ConstantError(TypeError) : pass def __setattr__(self, key, value): if key in self.__dict__.keys(): raise(self.ConstantError, "常量重新赋值错误!") self.__dict__[key] = valuesy原创 2020-10-21 15:31:44 · 386 阅读 · 0 评论