2021-03-11基本层结构(参数)

BN层
在这里插入图片描述
预测阶段,所有的参数的取值都是固定的,对BN层而言,意味着μ、σ、γ、β都是固定值
γ、β是学习的值,测试阶段为固定值,
对于μ、σ,在训练阶段它们为当前mini batch的统计量,随着输入batch的不同,μ、σ一直在变化,在预测阶段,输入数据只能有一条,选择的u和σ可以采用训练收敛最后几批mini batch的μ、σ的期望,作为预测阶段的μ和σ
在这里插入图片描述
1、BN的作用:
可以使用更大的学习率,训练过程更加稳定,极大提高了训练速度。
可以将bias置为0,因为Batch Normalization的Standardization过程会移除直流分量,所以不再需要bias。
对权重初始化不再敏感,通常权重采样自0均值某方差的高斯分布,以往对高斯分布的方差设置十分重要,有了Batch
Normalization后,对与同一个输出节点相连的权重进行放缩,其标准差σ也会放缩同样的倍数,相除抵消。
对权重的尺度不再敏感,理由同上,尺度统一由γ参数控制,在训练中决定。
深层网络可以使用sigmoid和tanh了,理由同上,BN抑制了梯度消失。
Batch Normalization具有某种正则作用,不需要太依赖dropout,减少过拟合。
2、BN层放在ReLU前面还是后面?
原paper建议将BN层放置在ReLU前,因为ReLU激活函数的输出非负,不能近似为高斯分布。

参数
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
ReLU
参数
inplace 可以选择就地操作
在这里插入图片描述

在这里插入图片描述
Conv2D
在这里插入图片描述
在这里插入图片描述
Group
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值