题目描述:
给定一个整数数组 nums,求出数组从索引 i 到 j(i ≤ j)范围内元素的总和,包含 i、j 两点。
实现 NumArray 类:
NumArray(int[] nums) 使用数组 nums 初始化对象
int sumRange(int i, int j) 返回数组 nums 从索引 i 到 j(i ≤ j)范围内元素的总和,包含 i、j 两点(也就是 sum(nums[i], nums[i + 1], … , nums[j]))
示例:
输入:
[“NumArray”, “sumRange”, “sumRange”, “sumRange”]
[[[-2, 0, 3, -5, 2, -1]], [0, 2], [2, 5], [0, 5]]
输出:
[null, 1, -1, -3]
解释:
NumArray numArray = new NumArray([-2, 0, 3, -5, 2, -1]);
numArray.sumRange(0, 2); // return 1 ((-2) + 0 + 3)
numArray.sumRange(2, 5); // return -1 (3 + (-5) + 2 + (-1))
numArray.sumRange(0, 5); // return -3 ((-2) + 0 + 3 + (-5) + 2 + (-1))
直接法 代码:
class NumArray {
private:
vector<int> nums;
public:
NumArray(vector<int>& nums) {
int l = nums.size();
for(int i=0;i<l;i++){
this->nums.push_back(nums[i]);
}
}
int sumRange(int left, int right) {
int s=0;
for(int i=left;i<=right;i++){
s+=nums[i];
}
return s;
}
};
暴力加和,能通过但是时间复杂度不理想。
动态规划法 代码:
class NumArray {
private:
vector<int> s;
public:
NumArray(vector<int>& nums) {
int l = nums.size();
s.resize(l+1);
for(int i=0;i<l;i++){
s[i+1]=s[i]+nums[i];
}
}
int sumRange(int left, int right) {
return s[right+1]-s[left];
}
};
/**
* Your NumArray object will be instantiated and called as such:
* NumArray* obj = new NumArray(nums);
* int param_1 = obj->sumRange(left,right);
*/
因为只输入一次数组,后续输入的下标都是针对同一个数组进行加和,很可能在加和的过程中重复运算,比如对数组a,输入[0,2],[0,5],这样0~2之间的元素求和计算了两遍,浪费时间。
改用动态规划,对[x,y]求和就是[0,y]求和结果-[0,x]求和结果,只需在初始化时先求出所有[0,i],再在需要求某个区间时做减法,时间复杂度O(1)。
用D[x]表示对下标x前(不含下标x元素)的所有元素求和操作,得到表达式:
D[i+1] = D[i] + nums[i] ( 0<=m<=n )