【leetcode】区域和检索 - 数组不可变c++

题目描述:
给定一个整数数组 nums,求出数组从索引 i 到 j(i ≤ j)范围内元素的总和,包含 i、j 两点。

实现 NumArray 类:

NumArray(int[] nums) 使用数组 nums 初始化对象
int sumRange(int i, int j) 返回数组 nums 从索引 i 到 j(i ≤ j)范围内元素的总和,包含 i、j 两点(也就是 sum(nums[i], nums[i + 1], … , nums[j]))

示例:

输入:
[“NumArray”, “sumRange”, “sumRange”, “sumRange”]
[[[-2, 0, 3, -5, 2, -1]], [0, 2], [2, 5], [0, 5]]
输出:
[null, 1, -1, -3]
解释:
NumArray numArray = new NumArray([-2, 0, 3, -5, 2, -1]);
numArray.sumRange(0, 2); // return 1 ((-2) + 0 + 3)
numArray.sumRange(2, 5); // return -1 (3 + (-5) + 2 + (-1))
numArray.sumRange(0, 5); // return -3 ((-2) + 0 + 3 + (-5) + 2 + (-1))

直接法 代码:

class NumArray {
private:
    vector<int> nums;
public:
    NumArray(vector<int>& nums) {
        int l = nums.size();
        for(int i=0;i<l;i++){
            this->nums.push_back(nums[i]);
        }
    }
    
    int sumRange(int left, int right) {
        int s=0;
        for(int i=left;i<=right;i++){
            s+=nums[i];
        }
        return s;
    }
};

暴力加和,能通过但是时间复杂度不理想。
在这里插入图片描述

动态规划法 代码:

class NumArray {
private:
    vector<int> s;
public:
    NumArray(vector<int>& nums) {
        int l = nums.size();
        s.resize(l+1);
        for(int i=0;i<l;i++){
            s[i+1]=s[i]+nums[i];
        }
    }
    
    int sumRange(int left, int right) {
        return s[right+1]-s[left];
    }
};

/**
 * Your NumArray object will be instantiated and called as such:
 * NumArray* obj = new NumArray(nums);
 * int param_1 = obj->sumRange(left,right);
 */

因为只输入一次数组,后续输入的下标都是针对同一个数组进行加和,很可能在加和的过程中重复运算,比如对数组a,输入[0,2],[0,5],这样0~2之间的元素求和计算了两遍,浪费时间。

改用动态规划,对[x,y]求和就是[0,y]求和结果-[0,x]求和结果,只需在初始化时先求出所有[0,i],再在需要求某个区间时做减法,时间复杂度O(1)。

用D[x]表示对下标x前(不含下标x元素)的所有元素求和操作,得到表达式:

D[i+1] = D[i] + nums[i] ( 0<=m<=n )

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值