pytorch
学习记录
白白的雷
努力学习图像分割的小雷
展开
-
网络训练
最近在训练自己的模型时遇到了一个问题:train_loss:nan,于是我就百度了下。发现导致此问题的原因有这几种:学习率过大,网络问题,损失函数的问题,batch_size过大等,本质上来说就是梯度爆炸导致的训练损失过大等等。然后我就把经典的unet模型代替我的模型,发现可以得到正常的训练损失,因此我判定问题出在我的网络模型上。于是我就把两个模型之间作比较,发现我的模型少了BN和relu操作,于...原创 2020-03-20 14:32:09 · 218 阅读 · 0 评论 -
扫雷
安装pydot和graphviz遇到的坑今天在学习用keras画网络结构图时需要安装pydot和graphviz包,安装网上的教程,我先下载了pydot:pip install pydot,然后在graphviz官网下载了msi压缩包:graphviz下载地址,最后把graphviz的安装路径下的bin目录加入到电脑的高级属性的环境变量的path值中就完成安装,以我的电脑为例:D:\app\gr...原创 2019-11-21 16:22:49 · 223 阅读 · 0 评论 -
pytorch14天学习打卡
day11.线性回归(1)基本要素:模型:y=w*x+b数据集:测试集和训练集损失函数:优化函数:随机梯度下降,即对参数进行多次迭代,使每次迭代都能降低损失函数的值。(2)使用pytorch实现import torchfrom torch import nnimport numpy as nptorch.manual_seed(1)print(torch.__versio...原创 2020-02-14 19:52:04 · 199 阅读 · 0 评论 -
2020-01-12
以后不会随便装pyqt5了,今天装了以后连spyder都打不开了!据说是两个版本的qt搞混了,现在也只能重装anaconda了????原创 2020-01-12 22:17:53 · 98 阅读 · 0 评论 -
14天pytorch第二次打卡
训练模型过程中常见的问题:(1)过拟合(overfitting):模型在训练时的误差远小于测试时的误差(训练误差较小,实际测试时误差大)(2)欠拟合(underfitting):训练误差较大影响因素:数据集的大小,模型的复杂度等过拟合改进方法:dropout,正则化(3)当神经网络的层数较多时,梯度的计算容易出现消失或爆炸现象。卷积神经网络基础:二维卷积核(过滤器)在二维数组上不断...原创 2020-02-19 23:47:43 · 122 阅读 · 0 评论 -
深度学习
安装notebook和tensorflow进入了新的阶段后,开始学习了图像处理方面的知识。虽然知道这一领域很难,但还是想坚持下去。希望可以在这里记录下自己三年来的成长。不说废话了,现在进入正题。深度学习目前在图像方面的应用可以说是很火爆了,深度学习是机器学习的一部分,而它又包括卷积神经网络等。study1:完成了notebook和tensorflow的安装。任何语言的学习都离不开万能的第...原创 2019-09-29 18:09:56 · 655 阅读 · 0 评论