tensorflow
文章平均质量分 67
闲人_Yty
这个作者很懒,什么都没留下…
展开
-
MobileNetV1/V2详解_以及MobileNetV2_Tensorflow2实现
MobileNet v1/v2卷积神经网络(CNN)已经普遍应用在计算机视觉领域,并且已经取得了不错的效果。图1为近几年来CNN在ImageNet竞赛的表现,可以看到为了追求分类准确度,模型深度越来越深,模型复杂度也越来越高,如深度残差网络(ResNet)其层数已经多达152层。然而,在某些真实的应用场景如移动或者嵌入式设备,如此大而复杂的模型是难以被应用的。首先是模型过于庞大,面临着内存不足的问题,其次这些场景要求低延迟,或者说响应速度要快,想象一下自动驾驶汽车的行人检测系统如果速度很慢会发生什么可怕原创 2021-02-04 14:31:06 · 997 阅读 · 0 评论 -
forget tf1! TensorFlow2索引和切片
文章目录TensorFlow2 Index & sliceBasic indexingNumpy-style indexingslicestart:endIndexing bystart:end:step (::)::-1 (inverse)...Seletive Indexingtf.boolean_maskTensorFlow2 Index & sliceindexingBasic indexing[idx][idx][idx]Same with Numpy[id原创 2021-02-03 23:06:10 · 473 阅读 · 1 评论 -
forget tf1! tensorflow2的数据类型,tensor属性参数以及创建方法
tensorflow2import tensorflow as tfimport numpy as nptensorflow数据类型constant(可修改)a = tf.constant(1)print(a)a = tf.constant(2)print(a)tf.Tensor(1, shape=(), dtype=int32)tf.Tensor(2, shape=(), dtype=int32)tf.constant(1.)<tf.Tensor: shape=(),原创 2021-02-03 17:54:35 · 790 阅读 · 0 评论 -
ResNet详解以及Tensorflow2实现(resnet_v1/v2_34/50/101)
ResNet_Tensorflow2实现ResNet引入在VGG-19中,卷积网络达到了19层,在GoogLeNet中,网络史无前例的达到了22层。网络层数越高包含的函数空间也就越大,理论上网络的加深会让模型更有可能找到合适的函数。但实际上,网络的精度会随着网络的层数增多而增多吗?在深度学习中,网络层数增多一般会伴着下面几个问题计算资源的消耗模型容易过拟合梯度消失/梯度爆炸问题的产生根据实验表明,随着网络的加深,优化效果反而越差,测试数据和训练数据的准确率反而降低了。这是由于网络的加深会原创 2021-02-03 01:33:12 · 1479 阅读 · 1 评论 -
交叉熵以及通过Python实现softmax_交叉熵(tensorflow验证)
文章目录交叉熵(Cross Entropy)信息论相对熵交叉熵机器学习中的交叉熵为什么要用交叉熵做损失函数?分类问题中的交叉熵softmaxsoftmax_cross_entropy求导Python实现单分类softmax_交叉熵交叉熵(Cross Entropy)交叉熵(cross entropy)是深度学习中常用的一个概念,一般用来求目标与预测值之间的差距。交叉熵(Cross Entropy)是Shannon信息论中一个重要概念,主要用于度量两个概率分布间的差异性信息。语言模型的性能通常用交叉熵和原创 2021-02-01 19:24:34 · 1616 阅读 · 0 评论 -
Kaggle (digit recognizer) PCA+SVM
下载minst数据集kaggle competitions download -c digit-recognizer包含两个文件:train.csvtest.csvimport pandas as pdimport matplotlib.pyplot as pltimport numpy as nptrain = pd.read_csv('../../../datasets/digit-recognizer/train.csv')print(train.shape)test .原创 2021-01-15 17:00:56 · 206 阅读 · 1 评论 -
Hello, Tensorflow
Hello, TensorflowTensorflow是广泛使用的实现机器学习以及其它涉及大量数学运算的算法库之一。Tensorflow由Google开发,是GitHub上最受欢迎的机器学习库之一。Google几乎在所有应用程序中都使用Tensorflow来实现机器学习。 例如,如果您使用到了Google照片或Google语音搜索,那么您就间接使用了Tensorflow模型。它们在大型Google硬件集群上工作,在感知任务方面功能强大。Tensowflow内部有自己定义的常量、变量、数据操作等要素,它使原创 2021-01-14 15:07:39 · 217 阅读 · 0 评论