机器学习
文章平均质量分 78
闲人_Yty
这个作者很懒,什么都没留下…
展开
-
李宏毅机器学习2021系列 作业2-年收入判断
李宏毅机器学习2021系列作业2-年收入判断项目描述二元分类是机器学习中最基础的问题之一,在这份教学中,你将学会如何实作一个线性二元分类器,来根据人们的个人资料,判断其年收入是否高于 50,000 美元。我们将以两种方法: logistic regression 与 generative model,来达成以上目的,你可以尝试了解、分析两者的设计理念及差别。实现二分类任务:个人收入是否超过50000元?数据集介绍这个资料集是由UCI Machine Learning Repository原创 2021-03-17 16:49:37 · 2790 阅读 · 8 评论 -
李宏毅机器学习2021系列 作业1-PM2.5预测
李宏毅机器学习2021系列作业1-PM2.5预测项目描述本次作业的资料是从行政院环境环保署空气品质监测网所下载的观测资料。希望大家能在本作业实现 linear regression 预测出 PM2.5 的数值。数据集介绍本次作业使用丰原站的观测记录,分成 train set 跟 test set,train set 是丰原站每个月的前 20 天所有资料。test set 则是从丰原站剩下的资料中取样出来。train.csv: 每个月前 20 天的完整资料。test.csv : 从剩下的原创 2021-03-15 23:17:22 · 2519 阅读 · 1 评论 -
paddle2.0实现DNN(minst数据集)
文章目录paddle2.0实现DNN(minst数据集)Python依赖库数据准备数据集介绍train_reader和test_reader网络配置模型预测图片预处理使用Matplotlib工具显示这张图像并预测paddle2.0实现DNN(minst数据集)实践总体过程和步骤如下图:#导入需要的包import osimport zipfileimport randomimport jsonimport numpy as npfrom PIL import Imageimport m原创 2021-01-18 12:06:16 · 871 阅读 · 0 评论 -
Kaggle (digit recognizer) PCA+SVM
下载minst数据集kaggle competitions download -c digit-recognizer包含两个文件:train.csvtest.csvimport pandas as pdimport matplotlib.pyplot as pltimport numpy as nptrain = pd.read_csv('../../../datasets/digit-recognizer/train.csv')print(train.shape)test .原创 2021-01-15 17:00:56 · 206 阅读 · 1 评论 -
Hello, Tensorflow
Hello, TensorflowTensorflow是广泛使用的实现机器学习以及其它涉及大量数学运算的算法库之一。Tensorflow由Google开发,是GitHub上最受欢迎的机器学习库之一。Google几乎在所有应用程序中都使用Tensorflow来实现机器学习。 例如,如果您使用到了Google照片或Google语音搜索,那么您就间接使用了Tensorflow模型。它们在大型Google硬件集群上工作,在感知任务方面功能强大。Tensowflow内部有自己定义的常量、变量、数据操作等要素,它使原创 2021-01-14 15:07:39 · 217 阅读 · 0 评论 -
超参数网络搜索(GridSearchCV)
超参数网络搜索由于各个新模型在执行交叉验证的过程中间是相互独立的,所以我们可以充分利用多核处理器(Multicore processor)甚至是分布式的计算资源来从事并行搜索,节省运算时间。# 导入20类新闻文本抓取器from sklearn.datasets import fetch_20newsgroupsimport numpy as npnews = fetch_20newsgroups(subset='all')print(news.DESCR).. _20newsgroups_原创 2021-01-13 16:14:35 · 714 阅读 · 0 评论 -
机器学习模型性能衡量指标(回归)以及Python实现
文章目录机器学习模型性能衡量指标(回归)以及Python实现平均绝对误差(Mean Absolute Error, MAE)MSE 均方误差(Mean Squared Error, MSE)RMSE 均方根误差(Mean Squared Error, RMSE)R2(R-Square)校正决定系数(Adjust R-Square)机器学习模型性能衡量指标(回归)以及Python实现平均绝对误差(Mean Absolute Error, MAE)MAE=1m∑i=1m∣(yi−yi^)∣MAE = \原创 2021-01-11 19:36:12 · 761 阅读 · 0 评论 -
StandardScaler(sklearn)机器学习中的归一化
StandardScaler(sklearn)参数详解为什么要归一化归一化后加快了梯度下降求最优解的速度:如果机器学习模型使用梯度下降法求最优解时,归一化往往非常有必要,否则很难收敛甚至不能收敛。归一化有可能提高精度:一些分类器需要计算样本之间的距离(如欧氏距离),例如KNN。如果一个特征值域范围非常大,那么距离计算就主要取决于这个特征,从而与实际情况相悖(比如这时实际情况是值域范围小的特征更重要)。from sklearn.preprocessing import Standard原创 2021-01-11 16:59:42 · 4175 阅读 · 1 评论