拉格朗日(Lagrange)插值

问题

给定 n n n 个点,可确定一个多项式 y = f ( x ) y=f(x) y=f(x) ,要求确定这个多项式并求出 f ( k ) f(k) f(k)

拉格朗日(Lagrange)插值公式

搬运

L n ( x ) = f ( x ) L_n(x)=f(x) Ln(x)=f(x)


n=1



由点斜式可以得到
在这里插入图片描述
其中
在这里插入图片描述
这里 l k ( x ) l_k(x) lk(x) l k + 1 l_{k+1} lk+1 称作线性插值基函数。


n=2


在这里插入图片描述
构造
[公式]
易得
在这里插入图片描述


一般情况

L n ( x ) = l 0 ( x ) ∗ y 0 + l 1 ( x ) ∗ y 1 + l 2 ( x ) ∗ y 2 + . . . + l n ( x ) ∗ y n L_n(x)=l_0(x)*y_0+l_1(x)*y_1+l_2(x)*y_2+...+l_n(x)*y_n Ln(x)=l0(x)y0+l1(x)y1+l2(x)y2+...+ln(x)yn

其中
在这里插入图片描述
于是
在这里插入图片描述


因此,求 f ( k ) f(k) f(k) 直接将 k k k 带入即可

时间复杂度 O ( n 2 ) O(n^2) O(n2)

O ( n 2 ) O(n^2) O(n2)求系数 留坑

高斯消元 O ( n 3 ) O(n^3) O(n3) 求系数

代码

模板求 f ( k ) f(k) f(k)

#include<bits/stdc++.h>
#define LL long long
#define mod 998244353
using namespace std;
const int N=2e3+9;
int n;
LL k,ans;
LL x[N],y[N];
LL Inv(LL a,LL b)
{
	LL tot=1LL;
	while(b)
	{
		if(b&1) (tot*=a)%=mod;
		(a*=a)%=mod; b>>=1;
	}
	return tot;
}
LL Lagrange()
{
	for(int i=1;i<=n;i++)
	{
		LL fz=1LL,fm=1LL;
		for(int j=1;j<=n;j++)
			if(i!=j)
			{
				(fz*=(k-x[j]))%=mod;
				(fm*=(x[i]-x[j]))%=mod;
			}
		(ans+=y[i]*fz%mod*Inv(fm,mod-2)%mod+mod)%=mod;
	}
	return ans;
}
int main()
{
	scanf("%d%lld",&n,&k);
	for(int i=1;i<=n;i++)
		scanf("%lld%lld",&x[i],&y[i]);
	printf("%lld\n",Lagrange());
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值