两种模式的原理:
cluster模式:
Spark Driver首先作为一个ApplicationMaster在YARN集群中启动,客户端提交给ResourceManager的每一个job都会在集群的NodeManager节点上分配一个唯一的ApplicationMaster,由该ApplicationMaster管理全生命周期的应用。具体过程:
由client向ResourceManager提交请求,并上传jar到HDFS上
这期间包括四个步骤:
a).连接到RM
b).从RM的ASM(ApplicationsManager )中获得metric、queue和resource等信息。
c). upload app jar and spark-assembly jar
d).设置运行环境和container上下文(launch-container.sh等脚本)ResourceManager为该应用程序分配第一个Container,创建Spark ApplicationMaster(每个SparkContext都有一个ApplicationMaster)
- NodeManager启动ApplicationMaster,并向ResourceManager注册
- ApplicationMaster从HDFS中找到jar文件,启动SparkContext、DAGscheduler和YARN Cluster Scheduler
- ApplicationMaster向ResourceManager注册申请container资源
- ResourceManager通知NodeManager分配Container(每个container对应一个executor)
- Spark ApplicationMaster直接和container(executor)进行交互,完成这个分布式任务。
client模式:
在client模式下,Driver运行在Client上,通过ApplicationMaster向RM获取资源。本地Driver负责与所有的executor container进行交互,并将最后的结果汇总。结束掉终端,相当于kill掉这个spark应用。一般来说,如果运行的结果仅仅返回到terminal上时需要配置这个。
客户端的Driver将应用提交给Yarn后,Yarn会先后启动ApplicationMaster和executor,另外ApplicationMaster和executor都是装载在container里运行,container默认的内存是1G,ApplicationMaster分配的内存是driver- memory,executor分配的内存是executor-memory。同时,因为Driver在客户端,所以程序的运行结果可以在客户端显示,Driver以进程名为SparkSubmit的形式存在。