交叉熵的本质是极大似然估计

转载自 https://www.zhihu.com/question/65288314/answer/849294209

交叉熵这东西你如果理解为两个概率分布会发现它就是nonsense,你得把对数里面那个分布理解为真实的随机变量分布,而将对数外面那个理解为观察到的频率。然后你就会发现它就是最最原始的MLE(最大似然估计)套了个时髦的壳而已。

比如说现在有一个真实分布为 P(x) 的随机变量,我们对它进行了N次独立同分布实验,对于每个可能的结果x观察到的次数为 N(x) ,那么它的似然值就可以写成
在这里插入图片描述
很好理解对吧,乘法公式,把每次实验的概率乘起来,然后合并相同的项写成幂次。这是个乘积的形式,取个对数可以得到求和的形式:
在这里插入图片描述
这个式子有两个缺点,第一它是个负数,第二它的数值跟样本数有关,样本越多数值越小,因此除以一下总的样本数归一化,再取个相反数,然后改用频率表示:在这里插入图片描述
这就齐活了。因此可以看出,交叉熵最小实质上就是似然值最大。我们可以证明,在给定 Po 的情况下,使交叉熵最小的分布P一定有 P=Po ,只需要用拉格朗日乘子法就可以: 求偏导得到在这里插入图片描述
即 Po 和 P 成比例,再根据归一化条件得到 P=Po 因此在有模型约束的条件下求交叉熵最小值,也就是让模型输出的分布尽量能接近训练数据的分布。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
极大似然估计交叉熵之间存在密切的关系。在机器学习中,交叉熵通常被用作损失函数,用于衡量模型输出与真实标签之间的差异。下面我将简要介绍极大似然估计交叉熵的推导过程。 假设我们有一组观测数据 {x₁, x₂, ..., xₙ},这些数据是独立同分布的样本,我们希望用一个参数化的模型来描述这些数据。假设模型的参数为 θ,我们的目标是找到一个使得观测数据出现的概率最大化的参数值。 使用极大似然估计的思想,我们可以将观测数据出现的概率表示为一个关于参数 θ 的函数 L(θ),即似然函数。我们的目标是最大化似然函数 L(θ)。 在分类问题中,我们常常使用概率分布来描述模型输出的结果,比如使用 softmax 函数将模型输出转化为概率分布。假设我们有 K 个类别,模型输出的概率分布为 p(y=k|x; θ),其中 y 是真实标签。 那么对于观测数据 {x₁, x₂, ..., xₙ},它们的联合概率可以表示为: P(y₁, y₂, ..., yₙ|x₁, x₂, ..., xₙ; θ) = Πᵢ p(y=yᵢ|x=xᵢ; θ) 我们可以将这个联合概率视为一个关于参数 θ 的函数,记为 L(θ)。为了方便计算,我们可以取对数转换,得到对数似然函数: log L(θ) = Σᵢ log p(y=yᵢ|x=xᵢ; θ) 最大化对数似然函数等价于最小化其相反数的平均值。因此,我们可以定义交叉熵损失函数作为目标函数: J(θ) = -1/n Σᵢ log p(y=yᵢ|x=xᵢ; θ) 可以看出,交叉熵损失函数是对数似然函数的相反数的平均值。通过最小化交叉熵损失函数,我们实际上是在最大化观测数据出现的概率。 总结起来,极大似然估计交叉熵之间的推导过程是将观测数据的联合概率转换为对数似然函数,再通过最小化相反数的平均值得到交叉熵损失函数。交叉熵损失函数在训练机器学习模型中被广泛使用,特别是在分类问题中。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值