吴恩达机器学习总结五:单变量线性回归实战

线性回归实战总结: 单变量线性回归: 1、加载和查看数据(准备工作) data = load(‘ex1data1.txt’); x=data(:,1); y=data(:,2); plot(x,y,’rx’,’markersize’,10); ...

2018-08-02 20:40:31

阅读数 174

评论数 0

吴恩达机器学习总结四:Octave语法

第六章Octave语法 基本操作: 1、1 ~= 2判断不相等 2、小写pi表示π 3、A=[1 2;3 4;5 6]分号表示换行 4、D = 1:6就建立一个行向量[1,2,3,4,5,6] 5、E=[1:2:10]指定1-10步长为2,即[1,3,5,7,9] 6、F=ones(...

2018-08-02 20:33:55

阅读数 152

评论数 0

吴恩达机器学习总结三:多变量线性回归

第五章 多变量线性回归 6、多变量回归方程 矩阵形式: 7、多变量梯度下降法: 这里i表示第i种拟合曲线,因为对一个数据模型进行拟合时我们有很多种曲线作为备选方案,我们一直在做的就是找出其中与真实情况误差最小的曲线。所以先要指定某条拟合曲线,再由此确定它的参数,进而判断是不是最...

2018-08-01 11:33:41

阅读数 366

评论数 0

吴恩达机器学习总结二:单变量线性回归

第二章 单变量线性回归 3、代价函数:(是参数的方程,最常用平方误差代价函数) 定义:也叫损失函数,用来进行参数估计。当用一个确定的方程来拟合一些数据集时,为了保证方程最为合适拟合程度最好,即每一个点的预测值和真实值的差距都要小,故可用求方差的方法,将每一个点的预测值与真实值的差求平方和后...

2018-07-31 18:35:37

阅读数 257

评论数 0

吴恩达机器学习总结一:初识机器学习

第一章 初识机器学习(算法 algorithm) 1、监督学习:人为提供一组数据,已告知输入和期望的正确输出 分类问题:划38线分类 回归问题:(regression problem)拟合预测数值 2、无监督学习:数据特征区分不明显 聚类算法:为一组看似相似的数据分簇,发现其内部结构...

2018-07-31 18:29:03

阅读数 74

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭