浅谈L2正则化为什么有效
L2正则化为什么有效无论是学过机器学习还是深度学习的同学一定知道正则化可以缓解过拟合,最常用的就是L2正则化,即在损失函数J(θ)J(\theta)J(θ)上加上参数的L2范数λ∣∣θ∣∣2\lambda||\theta||_{2}λ∣∣θ∣∣2,不过一般也不开根号了,也就是直接加λ∑iθi2\lambda\sum\limits_{i}\theta_{i}^{2}λi∑θi2,λ\lambdaλ是正则化因子,它的大小决定了你有多想让参数向0靠近。如果被问到缓解过拟合的方法,那么L2正则化肯定是要知






