TianHongZXY
码龄7年
关注
提问 私信
  • 博客:88,960
    88,960
    总访问量
  • 13
    原创
  • 502,752
    排名
  • 16
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2017-09-23
博客简介:

TianHongZXY的博客

查看详细资料
个人成就
  • 获得63次点赞
  • 内容获得22次评论
  • 获得251次收藏
  • 代码片获得174次分享
创作历程
  • 3篇
    2020年
  • 3篇
    2019年
  • 8篇
    2018年
成就勋章
TA的专栏
  • 深度学习笔记
    12篇
  • micropython
  • nlp
    4篇
兴趣领域 设置
  • 人工智能
    机器学习深度学习自然语言处理pytorchnlp
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

179人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

浅谈L2正则化为什么有效

L2正则化为什么有效无论是学过机器学习还是深度学习的同学一定知道正则化可以缓解过拟合,最常用的就是L2正则化,即在损失函数J(θ)J(\theta)J(θ)上加上参数的L2范数λ∣∣θ∣∣2\lambda||\theta||_{2}λ∣∣θ∣∣2​,不过一般也不开根号了,也就是直接加λ∑iθi2\lambda\sum\limits_{i}\theta_{i}^{2}λi∑​θi2​,λ\lambdaλ是正则化因子,它的大小决定了你有多想让参数向0靠近。如果被问到缓解过拟合的方法,那么L2正则化肯定是要知
原创
发布博客 2020.06.09 ·
1039 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

自然语言推理入门:ESIM

Enhanced LSTM for Natural Language InferenceESIM是ACL2017的一篇论文,在当时成为各个NLP比赛的杀器,直到现在仍是入门自然语言推理值得一读的文章。本文根据ESIM原文以及pytorch代码实现对ESIM模型进行总结,有些地方的叙述保持了与代码一致而和原文不一致,比如在embedding处与原文就不完全一致,原论文只使用了我下面所写的init...
原创
发布博客 2020.05.04 ·
1703 阅读 ·
0 点赞 ·
0 评论 ·
13 收藏

深度知识追踪入门

背景介绍知识追踪(Knowledge Tracing)是根据学生过去的答题情况对学生的知识掌握情况进行建模,从而得到学生当前知识状态表示的一种技术,早期的知识追踪模型都是依赖于一阶马尔科夫模型,例如贝叶斯知识追踪(Bayesian Knowledge Tracing)。将深度学习的方法引入知识追踪最早出现于发表在NeurIPS 2015上的一篇论文《Deep Knowledge Tracing》...
原创
发布博客 2020.04.24 ·
2736 阅读 ·
1 点赞 ·
0 评论 ·
19 收藏

反讽检测(Sarcasm Detection)

最近在看反讽检测的文章,才读了几篇,写一下小结,看得还是挺费劲,也挺懵的,写个阅读笔记,让自己好好重新理解一下。Towards Multimodal Sarcasm Detection第一篇读的是Towards Multimodal Sarcasm Detection (An Obviously Perfect Paper) ,标题就很有意思,斜体的Obviously就是在这就带有自嘲,反语的...
原创
发布博客 2019.12.08 ·
4694 阅读 ·
3 点赞 ·
3 评论 ·
20 收藏

使用pytorch和torchtext进行文本分类

如何使用pytorch进行文本分类文本分类是NLP领域的较为容易的入门问题,本文记录我自己在做文本分类任务以及复现相关论文时的基本流程,绝大部分操作都使用了torch和torchtext两个库。1. 文本数据预处理首先数据存储在三个csv文件中,分别是train.csv,valid.csv,test.csv,第一列存储的是文本数据,例如情感分类问题经常是用户的评论review,例如imdb或...
原创
发布博客 2019.10.27 ·
5308 阅读 ·
10 点赞 ·
12 评论 ·
32 收藏

利用pytorch和torchtext预处理数据

pytorch广播矩阵当自定义矩阵来和一个 batch 的数据 X 做乘法的时候,设X.shape = [batch_size, dimx, dimy],那么自定义的矩阵 W.shape = [input_dim, output_dim]只需要input_dim==dimy就可以使用torch.matmul(X, W),pytorch在计算的时候会自动广播矩阵W,但计算完 W.shape 不会...
原创
发布博客 2019.07.10 ·
3432 阅读 ·
5 点赞 ·
2 评论 ·
11 收藏

python机器学习

发布资源 2018.12.08 ·
pdf

TPYBoard v202学习笔记(1)

查看文件import osos.listdir()打开文件# 只读方式打开main文件f = open('main.py', 'r')f.read()# 操作结束记得close释放资源f.close()联网 network类库AP模式: Access Point,提供无线接入服务,允许其它无线设备接入,提供数据访问,一般的无线路由/网桥工作在该模式下。AP和AP之间允许相互...
翻译
发布博客 2018.11.12 ·
2890 阅读 ·
4 点赞 ·
0 评论 ·
7 收藏

如何将cifar-10数据集的图片转化为227*227像素以供Alexnet训练

下载cifar-10数据集官网地址:http://www.cs.toronto.edu/~kriz/cifar.html这是从官网下载好的python版cifar-10数据集加载cifar-10数据集def load_file(cifar): '''加载cifar数据集''' import pickle with open('D:\cifar-10-ba...
原创
发布博客 2018.10.09 ·
10877 阅读 ·
6 点赞 ·
3 评论 ·
35 收藏

线性回归(logistic regression)

单变量线性回归本文以单变量线性回归为例,且变量为一次方,多变量只需要增加变量x1,x2······的个数,变量x也可以有更高的次方。h代表假设函数theta代表参数x代表输入变量y代表标签J代表损失函数目标即为通过改变参数theta的值,最小化损失函数,即要使假设函数h的输出尽可能接近标签y。例如预测房价问题,令输入x为房子的尺寸(m^2),y为已知的对应x的房价(万元),则要通...
原创
发布博客 2018.10.03 ·
388 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

评估机器学习项目性能的指标

单一数字评估指标(Single number evaluation metric)查全率(recall)与查准率(precision)评估机器学习项目的性能的指标最常用的有两个,分别是查全率和查准率。假如你做了两个识别猫的分类器A和B。当分类器识别图片为猫,记为positive,识别为其他,记为negative。查全率是指,对于所有的真猫图片,你的分类器正确识别出了多少百分比。 ...
原创
发布博客 2018.09.15 ·
420 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

正交化(Orthogonalization)

正交化(Orthogonalization)机器学习中可以调整的参数非常多,比如电视机上的按钮,有调整图像高度的旋钮,调整宽度的旋钮,以及调亮度,对比度等各种旋钮,互不影响。在旋每一个旋钮时,你都清楚的知道自己在调整什么,会得到什么样的效果,调整高度并不会影响到亮度,反之亦然,所以只要根据当前的情况,例如图像偏窄,亮度偏暗,你明确地知道应该调整哪两个旋钮,往哪个方向旋转,直到得到你满意的效...
原创
发布博客 2018.09.15 ·
10950 阅读 ·
7 点赞 ·
0 评论 ·
5 收藏

机器学习的偏差(bias)和方差(variance)问题

减少偏差偏差过大又称欠拟合(underfitting),原因通常是:模型太过简单,无法很好地拟合样本点。训练集太小。训练轮数太少,即训练时间太短。解决的办法自然是:使用更复杂的模型,在神经网络中增加隐藏层或隐藏单元。增长训练时间,使用更先进的优化算法。收集更多数据加入训练集(当模型无法很好拟合当前训练集时,此方法并无多大作用)解决偏差问题是最基本的要求,是最低标...
原创
发布博客 2018.09.09 ·
799 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

深度学习——学习率衰减(learning rate decay)

学习率衰减(learning rate decay)为了防止学习率过大,在收敛到全局最优点的时候会来回摆荡,所以要让学习率随着训练轮数不断按指数级下降,收敛梯度下降的学习步长。学习率衰减可以用以下代码实现 decayed_learning_rate = learning_rate * np.power(decay_rate,(global_step / decay_steps))de...
原创
发布博客 2018.09.08 ·
42520 阅读 ·
26 点赞 ·
2 评论 ·
118 收藏

Tensorflow简单操作入门

创建constant`constant_v = tf.constant(数值, name='constant_v')`如X = tf.constant(np.random.randn(3,1),name = 'X')y = tf.constant(39, name='y')创建变量variable_v = tf.Variable(算式, name='variable_...
原创
发布博客 2018.09.02 ·
168 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多