深度知识追踪入门

背景介绍

知识追踪(Knowledge Tracing)是根据学生过去的答题情况对学生的知识掌握情况进行建模,从而得到学生当前知识状态表示的一种技术,早期的知识追踪模型都是依赖于一阶马尔科夫模型,例如贝叶斯知识追踪(Bayesian Knowledge Tracing)。将深度学习的方法引入知识追踪最早出现于发表在NeurIPS 2015上的一篇论文《Deep Knowledge Tracing》,作者来自斯坦福大学。在这篇论文中,作者提出了使用深度知识追踪(Deep Knowledge Tracing)的概念,利用RNN对学生的学习情况进行建模,之后引出了一系列工作,2019年已经有使用Transformer代替RNN和LSTM并且达到了SOTA的论文。

由于深度学习并不需要人类教会模型不同题目的难易、考核内容等特定的知识,避免了大量的手工标注特征工作量,而且在互联网在线教育行业兴起后,拥有了海量的学生答题记录,这些答题记录就能教会模型将题库中成千上万条题目encode为一个向量,并且能类似于word2vec那样找出题目之间的关联。因此之后各种AI+教育、个性化、智能化教育的概念也火了起来。不过截止目前深度知识追踪仍然只是一个小领域,业界应该是做了不少工作的,但因为每个公司教育数据的私密性,不同公司数据的多样性,导致了数据集不公开,方法也大多不通用的情况,因此我们并不太能了解到那些在线教育巨头背后的AI技术,至于学界,论文大多发表在教育数据挖掘国际会议上(Educational Data Mining)。本文简单介绍深度知识追踪,给有兴趣入门的同学的作参考。

任务定义

知识追踪的任务是根据学生的答题记录,通常是一个时间序列,有些业务场景下是与时间无关的,建模得到学生的知识掌握状态,从而能准确预测其未来的答题情况,并依据此为未来的智能化出题做参考,避免给学生出太难或太简单的题目。具体上,假设一个学生的答题记录为 x 0 , x 1 , . . . , x t x_{0},x_{1},...,x_{t} x0,x1,...,xt,我们要去预测下一个交互的情况 x t + 1 x_{t+1} xt+1,通常一次交互 x t = ( q t , a t ) x_{t}=(q_{t}, a_{t}) xt=(qt,at) q t q_{t} qt代表该学生回答题目 a t a_{t} at的正误情况。简单的来说就是知道了学生答了一系列题目,也都知道他都回答对了没,现在我要从题库里再抽一题给他,让模型预测预测他能不能答对,答对的概率是多少,那么如果模型给出的概率是1,代表这题对他来说是太简单了,如果给出的概率为0,就代表这题可能太难了,他八成是做不出来的。

模型

上面说了,Deep Knowledge Tracing这篇论文是用了RNN来把答题记录当做平常的

  • 0
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值