【算法工程师面试】正则化

本文介绍了正则化在防止过拟合中的关键作用,详细讲解了L0、L1和L2正则化的概念、原理以及它们在稀疏性、特征选择和降低模型复杂度方面的区别。L1和L2正则化尤其在控制权重分布和提高泛化能力方面具有重要作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.什么是正则化?

正则化意味着通过将系数估计值缩小到零来限制模型,以避免过拟合。当模型出现过拟合时,应该控制模型的复杂度。从技术上讲,正则化通过向模型的损失函数添加惩罚来避免过拟合。

正则化是一种通过引入额外信息或约束来防止模型过拟合,提高泛化能力的技术。

2.L0,L1,L2正则化?

L0正则化

关注的是向量中非零元素的个数,通过限制非零元素的个数在一定范围内来实现稀疏性。然而,用L0范数实现稀疏是一个NP-hard问题,因此实际应用中,人们常使用L1正则化来近似实现稀疏性。

L1正则化

通过在目标函数中添加L1范数惩罚项来实现,即模型的权重向量中每个元素的绝对值之和乘以一个正则化参数。它有助于防止模型对噪声或不相关特征进行过度拟合,提高模型的泛化能力。同时,L1正则化常用于特征选择,因为它倾向于将不相关特征的权重系数设为零,使模型只关注最重要的特征。

L2正则化

又称为权重衰减,是以参数权重的二次方之和作为惩罚项。通过在损失函数中添加L2范数惩罚项,可以使得参数权重变得更加平滑,降低模型复杂度,从而缓解过度拟合的问题。L2正则化倾向于产生较小的权重,而不是像L1正则化那样产生完全为零的权重。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值