1.什么是正则化?
正则化意味着通过将系数估计值缩小到零来限制模型,以避免过拟合。当模型出现过拟合时,应该控制模型的复杂度。从技术上讲,正则化通过向模型的损失函数添加惩罚来避免过拟合。
正则化是一种通过引入额外信息或约束来防止模型过拟合,提高泛化能力的技术。
2.L0,L1,L2正则化?
L0正则化
关注的是向量中非零元素的个数,通过限制非零元素的个数在一定范围内来实现稀疏性。然而,用L0范数实现稀疏是一个NP-hard问题,因此实际应用中,人们常使用L1正则化来近似实现稀疏性。
L1正则化
通过在目标函数中添加L1范数惩罚项来实现,即模型的权重向量中每个元素的绝对值之和乘以一个正则化参数。它有助于防止模型对噪声或不相关特征进行过度拟合,提高模型的泛化能力。同时,L1正则化常用于特征选择,因为它倾向于将不相关特征的权重系数设为零,使模型只关注最重要的特征。
L2正则化
又称为权重衰减,是以参数权重的二次方之和作为惩罚项。通过在损失函数中添加L2范数惩罚项,可以使得参数权重变得更加平滑,降低模型复杂度,从而缓解过度拟合的问题。L2正则化倾向于产生较小的权重,而不是像L1正则化那样产生完全为零的权重。