题目来源:
https://www.luogu.org/problemnew/show/P2169
题目描述:
题目背景
小Z童鞋一日意外的看到小X写了一个正则表达式的高级程序,这个正则表达式程序仅仅由字符“0”,“1”,“.”和“*”构成,但是他能够匹配出所有在OJ上都AC的程序的核心代码!小Z大为颇感好奇,于是他决定入侵小X的电脑上去获得这个正则表达式的高级程序。
题目描述
在Internet网络中的每台电脑并不是直接一对一连通的,而是某些电脑之间存在单向的网络连接,也就是说存在A到B的连接不一定存在B到A的连接,并且有些连接传输速度很快,有些则很慢,所以不同连接传输所花的时间是有大有小的。另外,如果存在A到B的连接的同时也存在B到A的连接的话,那么A和B实际上处于同一局域网内,可以通过本地传输,这样花费的传输时间为0。
现在小Z告诉你整个网络的构成情况,他希望知道从他的电脑(编号为1),到小X的电脑(编号为n)所需要的最短传输时间。
输入输出格式
输入格式:
第一行两个整数n, m, 表示有n台电脑,m个连接关系。
接下来m行,每行三个整数u,v,w;表示从电脑u到电脑v传输信息的时间为w。
输出格式:
输出文件仅一行为最短传输时间。
输入输出样例
输入样例#1: 复制
3 2 1 2 1 2 3 1
输出样例#1: 复制
2
输入样例#2: 复制
5 5 1 2 1 2 3 6 3 4 1 4 2 1 3 5 2
输出样例#2: 复制
3
说明
对于40%的数据,1<=n<=1000, 1<=m<=10000
对于70%的数据,1<=n<=5000, 1<=m<=100000
对于100%的数据,1<=n<=200000, 1<=m<=1000000
解题思路:
这题太裸,我们只要tarjan缩点就行,然后重新建图就可以spfa就可以求出最短路了。。
代码:
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cstring>
#include <string>
#include <vector>
#include <map>
#include <algorithm>
#include <queue>
#include <stack>
#include <cmath>
#define inf 0x3f3f3f3f
#define ll long long
using namespace std;
const int maxn=1e5+10;
int head1[2*maxn],head2[2*maxn],dis[2*maxn],vis[2*maxn],lt[2*maxn],n,m,cnt=0,gs=0,low[2*maxn],dfn[2*maxn];
struct newt
{
int to,next,cost;
}e1[10*maxn],e2[10*maxn];
void addedge1(int u,int v,int w)
{
e1[cnt].to=v;
e1[cnt].next=head1[u];
e1[cnt].cost=w;
head1[u]=cnt++;
}
void addedge2(int u,int v,int w)
{
e2[cnt].to=v;
e2[cnt].next=head2[u];
e2[cnt].cost=w;
head2[u]=cnt++;
}
stack<int>s;
int tot=0;
void tarjan(int u)
{
dfn[u]=low[u]=++tot;
vis[u]=1;s.push(u);
for(int i=head1[u];i!=-1;i=e1[i].next)
{
int v=e1[i].to;
if(!dfn[v])
{
tarjan(v);
low[u]=min(low[u],low[v]);
}
else if(vis[v]) low[u]=min(low[u],dfn[v]);
}
if(dfn[u]==low[u])
{
gs++;
while(1)
{
int now=s.top();
s.pop();
vis[now]=0;
//printf("%d ",now);
lt[now]=gs;
if(now==u)break;
}
// puts("");
}
}
void spfa(int S)
{
for(int i=1;i<=n;i++)dis[i]=inf,vis[i]=0;
queue<int>q;
q.push(S);
vis[S]=1;dis[S]=0;
while(!q.empty())
{
int now=q.front();q.pop();vis[now]=0;
for(int i=head2[now];i!=-1;i=e2[i].next)
{
int v=e2[i].to;
// printf("%d %d\n",now,v);
if(dis[v]>dis[now]+e2[i].cost)
{
dis[v]=dis[now]+e2[i].cost;
if(vis[v])continue;
vis[v]=1;
q.push(v);
}
}
}
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)head1[i]=-1,head2[i]=-1;
for(int i=1;i<=m;i++)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
addedge1(a,b,c);
}
for(int i=1;i<=n;i++)if(!dfn[i])tarjan(i);
cnt=0;
for(int u=1;u<=n;u++)
{
for(int j=head1[u];j!=-1;j=e1[j].next)
{
int v=e1[j].to;
//printf("%d %d\n",u,v);
if(lt[u]==lt[v])continue;
addedge2(lt[u],lt[v],e1[j].cost);
}
}
int S=lt[1],T=lt[n];
spfa(S);
printf("%d\n",dis[T]);
return 0;
}