洛谷 P2169 正则表达式 ( tarjan缩点+spfa) 题解

94 篇文章 0 订阅

题目来源:

https://www.luogu.org/problemnew/show/P2169

题目描述:

题目背景

小Z童鞋一日意外的看到小X写了一个正则表达式的高级程序,这个正则表达式程序仅仅由字符“0”,“1”,“.”和“*”构成,但是他能够匹配出所有在OJ上都AC的程序的核心代码!小Z大为颇感好奇,于是他决定入侵小X的电脑上去获得这个正则表达式的高级程序。

题目描述

在Internet网络中的每台电脑并不是直接一对一连通的,而是某些电脑之间存在单向的网络连接,也就是说存在A到B的连接不一定存在B到A的连接,并且有些连接传输速度很快,有些则很慢,所以不同连接传输所花的时间是有大有小的。另外,如果存在A到B的连接的同时也存在B到A的连接的话,那么A和B实际上处于同一局域网内,可以通过本地传输,这样花费的传输时间为0。

现在小Z告诉你整个网络的构成情况,他希望知道从他的电脑(编号为1),到小X的电脑(编号为n)所需要的最短传输时间。

输入输出格式

输入格式:

 

第一行两个整数n, m, 表示有n台电脑,m个连接关系。

接下来m行,每行三个整数u,v,w;表示从电脑u到电脑v传输信息的时间为w。

 

输出格式:

 

输出文件仅一行为最短传输时间。

 

输入输出样例

输入样例#1: 复制

3 2
1 2 1
2 3 1

输出样例#1: 复制

2

输入样例#2: 复制

5 5
1 2 1
2 3 6
3 4 1
4 2 1
3 5 2

输出样例#2: 复制

3

说明

对于40%的数据,1<=n<=1000, 1<=m<=10000

对于70%的数据,1<=n<=5000, 1<=m<=100000

对于100%的数据,1<=n<=200000, 1<=m<=1000000

 

解题思路:

       这题太裸,我们只要tarjan缩点就行,然后重新建图就可以spfa就可以求出最短路了。。

代码:

#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cstring>
#include <string>
#include <vector>
#include <map>
#include <algorithm>
#include <queue>
#include <stack>
#include <cmath>
#define inf 0x3f3f3f3f
#define ll long long
using namespace std;
const int  maxn=1e5+10;
int head1[2*maxn],head2[2*maxn],dis[2*maxn],vis[2*maxn],lt[2*maxn],n,m,cnt=0,gs=0,low[2*maxn],dfn[2*maxn];
struct newt
{
    int to,next,cost;
}e1[10*maxn],e2[10*maxn];
void addedge1(int u,int v,int w)
{
    e1[cnt].to=v;
    e1[cnt].next=head1[u];
    e1[cnt].cost=w;
    head1[u]=cnt++;
}
void addedge2(int u,int v,int w)
{
    e2[cnt].to=v;
    e2[cnt].next=head2[u];
    e2[cnt].cost=w;
    head2[u]=cnt++;
}
stack<int>s;
int tot=0;
void tarjan(int u)
{
    dfn[u]=low[u]=++tot;
    vis[u]=1;s.push(u);
    for(int i=head1[u];i!=-1;i=e1[i].next)
    {
        int v=e1[i].to;
        if(!dfn[v])
        {
            tarjan(v);
            low[u]=min(low[u],low[v]);
        }
        else if(vis[v]) low[u]=min(low[u],dfn[v]);
    }
    if(dfn[u]==low[u])
    {
        gs++;
        while(1)
        {
            int now=s.top();
            s.pop();
            vis[now]=0;
            //printf("%d ",now);
            lt[now]=gs;
            if(now==u)break;
        }
    //	puts("");
    }
}
void spfa(int S)
{
    for(int i=1;i<=n;i++)dis[i]=inf,vis[i]=0;
    queue<int>q;
    q.push(S);
    vis[S]=1;dis[S]=0;
    while(!q.empty())
    {
        int now=q.front();q.pop();vis[now]=0;
        for(int i=head2[now];i!=-1;i=e2[i].next)
        {
            int v=e2[i].to;
        //	printf("%d %d\n",now,v);
            if(dis[v]>dis[now]+e2[i].cost)
            {
                dis[v]=dis[now]+e2[i].cost;
                if(vis[v])continue;
                vis[v]=1;
                q.push(v);
            }
        }
    }
}
int main()
{
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++)head1[i]=-1,head2[i]=-1;
    for(int i=1;i<=m;i++)
    {
        int a,b,c;
        scanf("%d%d%d",&a,&b,&c);
        addedge1(a,b,c);
    }
    for(int i=1;i<=n;i++)if(!dfn[i])tarjan(i);
    cnt=0;
    for(int u=1;u<=n;u++)
    {
        for(int j=head1[u];j!=-1;j=e1[j].next)
        {
            int v=e1[j].to;
            //printf("%d %d\n",u,v);
            if(lt[u]==lt[v])continue;
            addedge2(lt[u],lt[v],e1[j].cost);
        }
    }
    int S=lt[1],T=lt[n];
    spfa(S);
    printf("%d\n",dis[T]);
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值