树状数组模板类

树状数组

//树状数组类
class BITree
{//树状数组数值处理部分:1~BITree_num
 //实际操作中建议数组开大一点
public:
	BITree(int dim,int x,int y);                    //构造(维数,树状数组长度)
	~BITree();                                      //析构
	int lowbit(int x);                              //求最低位1对应值
	//一维树状数组
	void update_1(int i, int cal);                  //更新点求区间
	void update_1(int pre, int last, int cal);      //更新区间(差分原理),求点
 	int sum_pre_1(int i);                           //求前缀和(更新点)/求点(更新区间)
	int sum_between_1(int pre, int last);           //求区间和(更新点)
	//二维树状数组
	void update_2(int x, int y, int cal);                                   //更新点
	void update_2(int left, int right, int below, int top, int cal);        //更新子矩阵(差分原理),求点
	int sum_pre_2(int x, int y);                                            //求前缀子矩阵
	int sum_between_2(int left, int right, int below, int top);             //求任意子矩阵

private:
	int BITree_num_1;   //一维树状数组长度
	int BITree_num_x;   //二维树状数组x轴长度  
	int BITree_num_y;   //二维树状数组y轴长度
	int BITree_dim;     //树状数组维度
	int* val_1;         //一维树状数组
	int** val_2;        //二维树状数组
};
BITree::BITree(int dim,int x,int y)
{//构造函数
	BITree_dim = dim;    //树状数组维度
	if (dim == 1)
	{//构建一维树状数组参数列表:(1,num,0)
		BITree_num_1 = x;   
		val_1 = new int[x];
		memset(val_1, 0, sizeof(int)*BITree_num_1);
	}
	else
	{//构建一维树状数组参数列表:(2,x,y)
		BITree_num_x = x;
		BITree_num_y = y;
		val_2 = (int**)new int*[x];
		for (int i = 0;i < BITree_num_x;i++)
			val_2[i] = new int[y];
		for (int i = 0;i < BITree_num_x;i++)
			memset(val_2[i], 0, sizeof(int)*BITree_num_y);
	}
}

BITree::~BITree()
{//析构函数
	if (BITree_dim == 1)
	{
		delete[]val_1;
		BITree_num_1 = 0;
	}
	else
	{
		for (int i = 0;i < BITree_num_x;i++)
			delete[]val_2[i];
		BITree_num_x = 0;
		BITree_num_y = 0;
	}
	BITree_dim = 0;
}

int BITree::lowbit(int x)
{//返回二进制数最低位的1对应的数值
	return x & (-x);      //与运算
}

//一维树状数组
void BITree::update_1(int i, int cal)
{//原数组第i个元素加上cal,更新树状数组相关元素
 //可直接用于树状数组的建立
	for (;i <= BITree_num_1;i += lowbit(i))
		val_1[i] += cal;
}
void BITree::update_1(int pre, int last, int cal)
{//更新区间(差分原理)
	BITree::update_1(pre, cal);
	cal = 0 - cal;       //区间末端变为-cal
	BITree::update_1(last+1, cal);
}

int BITree::sum_pre_1(int i)
{//求arry数组的前i项和
 //val为树状数组地址
	int sum = 0;
	for (;i > 0;i -= lowbit(i))       //从后向前每次跳一个lowbit
		sum += val_1[i];
	return sum;
}

int BITree::sum_between_1(int pre, int last)
{//求原数组arry在区间[pre-last]的和
	return sum_pre_1(last) - sum_pre_1(pre - 1);
}

//二维树状数组
void BITree::update_2(int x, int y, int cal)
{//当原数组A[x][y]+cal时,更新树状数组val
	for (int i = x;i <= BITree_num_x;i += lowbit(i))
		for (int j = y;j <= BITree_num_y;j += lowbit(j))
			val_2[i][j] += cal;
}

void BITree::update_2(int left, int right, int below, int top, int cal)
{//更新子矩阵【left】【below】——【right】【top】+cal(差分原理)
	update_2(left, below, cal);
	update_2(right+ 1, top + 1, cal);
	cal = 0 - cal;
	update_2(left, top + 1, cal);
	update_2(right + 1, below, cal);
}

int BITree::sum_pre_2(int x, int y)
{//求A[x][y]左上方的子矩阵A[1--x][1--y]的和
	int sum = 0;
	for (int i = x;i > 0;i -= lowbit(i))
		for (int j = y;j > 0;j -= lowbit(j))
			sum += val_2[i][j];
	return sum;
}

int BITree::sum_between_2(int left, int right, int below, int top)
{//求矩阵A[left--right][below--top]的和
	return sum_pre_2(right, top) - sum_pre_2(right, below - 1) - sum_pre_2(left - 1, top) + sum_pre_2(left - 1, below - 1);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值