pandas小技巧------------df.sample随机抽样

https://www.cnblogs.com/webRobot/p/11484648.html

1、功能说明
有时候我们只需要数据集中的一部分,并不需要全部的数据。这个时候我们就要对数据集进行随机的抽样。pandas中自带有抽样的方法。

函数名及功能

DataFrame.sample(n=None, frac=None, replace=False, weights=None, random_state=None, axis=None)[source]
  1. 输入参数说明
    在这里插入图片描述

参数名称 参数说明 举例说明
n 要抽取的行数
df.sample(n=3,random_state=1)
提取3行数据列表
注意,使用random_state,以确保可重复性的例子。

frac
抽取行的比例
例如frac=0.8,就是抽取其中80%。

df.sample(frac=0.8, replace=True, random_state=1)
replace
是否为有放回抽样,
True:有放回抽样
False:未放回抽样

True:取行数据后,可以重复放回后再取
False:取行数据后不放回,下次取其它行数据
注意:当N>总数据容量,replace设置为值时有效

weights
字符索引或概率数组

axis=0:为行字符索引或概率数组
axis=1:为列字符索引或概率数组

random_state
int: 随机数发生器种子
或numpy.random.RandomState

random_state=None,取得数据不重复
random_state=1,可以取得重复数据

axis
选择抽取数据的行还是列
axis=0:抽取行
axis=1:抽取列

也就是说axis=1时,在列中随机抽取n列,在axis=0时,在行中随机抽取n行。
3. 返回值说明
返回选择的N行元素的DataFrame对象。

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页