积性函数常用结论(持续更新)

积性函数常用结论(持续更新)

一、常用积性函数

所谓积性函数,就是指当 g c d ( a , b ) = 1 gcd(a,b)=1 gcd(a,b)=1时, f ( a b ) = f ( a ) ⋅ f ( b ) f(ab)=f(a)\cdot f(b) f(ab)=f(a)f(b)
常见积性函数:
元函数 ϵ ( n ) = [ n = = 1 ] \epsilon(n) =[n==1] ϵ(n)=[n==1]
恒等函数 1 ( n ) = 1 1(n) = 1 1(n)=1
单位函数 i d ( n ) = n id(n) = n id(n)=n
欧拉函数 φ ( n ) = ∏ p i ∣ n p i α i ( 1 − 1 p i ) \varphi(n) = \prod_{p_i|n}p_i^{\alpha_i}\left(1-\frac{1}{p_i}\right) φ(n)=pinpiαi(1pi1),表示 1 1 1 n n n中与 n n n互质的数的个数。
莫比乌斯函数 μ ( n ) = { 1 , n = 1 ( − 1 ) k , n = p 1 p 2 . . . p k 0 , o t h e r w i s e \mu(n)= \left \{ \begin{array}{ll} 1,& n= 1\\ (-1)^k ,& n=p_1p_2...p_k\\ 0, & otherwise \end{array} \right. μ(n)=1,(1)k,0,n=1n=p1p2...pkotherwise
约数和函数 σ ( n ) = ∑ d ∣ n d \sigma(n) = \sum_{d|n}d σ(n)=dnd
约数个数函数 d ( n ) = ∑ d ∣ n 1 d(n)=\sum_{d|n}1 d(n)=dn1

二、常用公式

卷积:
μ ∗ 1 = ϵ \mu * 1 = \epsilon μ1=ϵ ,也即 ϵ = ∑ d ∣ n μ ( d ) \epsilon = \sum_{d|n}\mu(d) ϵ=dnμ(d)
φ ∗ 1 = i d \varphi*1 =id φ1=id,也即 ∑ d ∣ n φ ( d ) = n \sum_{d|n}\varphi(d)=n dnφ(d)=n
i d ∗ μ = φ id*\mu = \varphi idμ=φ,也即 ∑ d ∣ n d μ ( n d ) = φ ( n ) \sum_{d|n}d\mu\left(\frac{n}{d} \right)=\varphi(n) dndμ(dn)=φ(n)
σ ∗ μ = 1 \sigma*\mu=1 σμ=1

欧拉函数 φ \varphi φ
所有小于 n n n的与 n n n互质的正整数的和为 n ⋅ φ ( n ) 2 \dfrac{n\cdot\varphi\left(n\right)}{2} 2nφ(n)
原因是对于 i < n i<n i<n g c d ( n , i ) = 1 gcd(n,i)=1 gcd(n,i)=1,有 g c d ( n , i ) = g c d ( n , n − i ) = 1 gcd(n,i) =gcd(n,n-i)=1 gcd(n,i)=gcd(n,ni)=1,两两配对即可。

三、思想方法

1.众所周知,我们做莫比乌斯反演常常会遇到很多 ∑ \sum ,而且要经常交换它们的位置。这个时候,我们要从其实际意义来理解,而不要从其数学意义上去理解。
2.所有的积性函数的卷积也是积性函数。大部分积性函数都可以利用线性筛在 O ( n ) O(n) O(n)时间内筛出。要想求积性函数 f f f,关键是求出 f ( p k ) f(p^k) f(pk)
因为,若
g ( n ) = ∑ d ∣ n f ( d ) g(n)=\sum_{d|n}f(d) g(n)=dnf(d)
那么,若
n = p 1 α 1 p 2 α 2 . . . p k α k n=p_1^{\alpha_1}p_2^{\alpha_2}...p_k^{\alpha_k} n=p1α1p2α2...pkαk

g ( n ) = ( f ( 1 ) + f ( p 1 ) + f ( p 1 2 ) + . . . + f ( p 1 α 1 ) ) ⋅ ( f ( 1 ) + f ( p 2 ) + f ( p 2 2 ) + . . . + f ( p 2 α 2 ) ) ⋅ . . . ⋅ ( f ( 1 ) + f ( p k ) + f ( p k 2 ) + . . . + f ( p k α k ) ) \begin{aligned} g(n)&=(f(1)+f(p_1)+f(p_1^2)+...+f(p_1^{\alpha_1}))\cdot \\&(f(1)+f(p_2)+f(p_2^2)+...+f(p_2^{\alpha_2}))\cdot ... \\ &\cdot(f(1)+f(p_k)+f(p_k^2)+...+f(p_k^{\alpha_k})) \end{aligned} g(n)=(f(1)+f(p1)+f(p12)+...+f(p1α1))(f(1)+f(p2)+f(p22)+...+f(p2α2))...(f(1)+f(pk)+f(pk2)+...+f(pkαk))

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值